Computational Intelligence

Winter Term 2014/15

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

Plan for Today

- Bidirectional Associative Memory (BAM)
- Fixed Points
- Concept of Energy Function
- Stable States = Minimizers of Energy Function
- Hopfield Network
- Convergence
- Application to Combinatorial Optimization

Bidirectional Associative Memory (BAM)

Network Model

- fully connected
- bidirectional edges
- synchonized:
step t : data flow from x to y
step $\mathrm{t}+1$: data flow from y to x

$$
\text { start: } \begin{aligned}
y^{(0)} & =\operatorname{sgn}\left(x^{(0)} W\right) \\
& x^{(1)}=\operatorname{sgn}\left(y^{(0)} W\right) \\
& y^{(1)}=\operatorname{sgn}\left(x^{(1)} W\right) \\
& x^{(2)}=\operatorname{sgn}\left(y^{(1)} W\right)
\end{aligned}
$$

bipolar inputs $\in\{-1,+1\}$

Bidirectional Associative Memory (BAM)

Fixed Points

Definition

(x, y) is fixed point of BAM iff $y=\operatorname{sgn}(x W)$ and $x^{\prime}=\operatorname{sgn}\left(W y^{\prime}\right)$.

Set $\mathrm{W}=\mathrm{x}^{\prime} \mathrm{y} . \quad$ (note: x is row vector)
$y=\operatorname{sgn}(x W)=\operatorname{sgn}\left(x\left(x^{\prime} y\right)\right)=\operatorname{sgn}\left(\left(x x^{\prime}\right) y\right)=\operatorname{sgn}(\underbrace{\|x\|^{2} y})=y$
>0 (does not alter sign)
$x^{\prime}=\operatorname{sgn}\left(W y^{\prime}\right)=\operatorname{sgn}\left(\left(x^{\prime} y\right) y^{\prime}\right)=\operatorname{sgn}\left(x^{x^{\prime}}\left(y y^{\prime}\right)\right)=\operatorname{sgn}(x^{x^{\prime}} \underbrace{\|y\|^{2}}_{>0 \text { (does not alter sign) }})=x^{\prime}$
Theorem: If $W=x^{\prime} y$ then (x, y) is fixed point of BAM.

Bidirectional Associative Memory (BAM)

Concept of Energy Function

given: $B A M$ with $W=x^{\prime} y \quad \Rightarrow(x, y)$ is stable state of BAM
starting point $\mathrm{x}^{(0)}$

$$
\begin{aligned}
& \Rightarrow \mathrm{y}^{(0)}=\operatorname{sgn}\left(\mathrm{x}^{(0)} \mathrm{W}\right) \\
& \Rightarrow \text { excitation } \mathrm{e}^{‘}=\mathrm{W}\left(\mathrm{y}^{(0)}\right)^{،}
\end{aligned}
$$

\Rightarrow if $\operatorname{sign}\left(e^{d}\right)=x^{(0)}$ then $\left(x^{(0)}, y^{(0)}\right)$ stable state

recall: $\frac{a b^{\prime}}{\|a\| \cdot\|b\|}=\cos \angle(a, b)$

small angle $\alpha \Rightarrow$ large $\cos (\alpha)$

Bidirectional Associative Memory (BAM)

Concept of Energy Function

required:
small angle between $e^{‘}=W y^{(0)}$ ‘ and $x^{(0)}$
\Rightarrow larger cosine of angle indicates greater similarity of vectors
$\Rightarrow \forall \mathrm{e}^{‘}$ of equal size: try to maximize $\mathrm{x}^{(0)} \mathrm{e}^{‘}=\left\|\mathrm{x}^{(0)}\right\| \cdot\|\mathrm{e}\| \cdot \cos \angle\left(\mathrm{x}^{(0)}, \mathrm{e}\right)$
fixed fixed \rightarrow max!
\Rightarrow maximize $x^{(0)} e^{‘}=x^{(0)} W y^{(0)}{ }^{\text {‘ }}$
\Rightarrow identical to minimize $-x^{(0)} \mathrm{W} \mathrm{y}^{(0)}$ ‘

Definition

Energy function of BAM at iteration t is $E\left(x^{(t)}, y^{(t)}\right)=-\frac{1}{2} x^{(t)} W y^{(t)}$ ‘

Bidirectional Associative Memory (BAM)

Stable States

Theorem

An asynchronous BAM with arbitrary weight matrix W reaches steady state in a finite number of updates.

Proof:
$E(x, y)=-\frac{1}{2} x W y^{\prime}=\left\{\begin{aligned} &-\frac{1}{2} x\left(W y^{\prime}\right)=-\frac{1}{2} x b^{\prime}=-\frac{1}{2} \sum_{i=1}^{n} b_{i} x_{i} \\ &-\frac{1}{2}(x W) y^{\prime}=-\frac{1}{2} a y^{\prime} \\ &=-\frac{1}{2} \sum_{i=1}^{k} a_{i} y_{i}\end{aligned}\right.$ excitations

BAM asynchronous $\Rightarrow \quad$ select neuron at random from left or right layer, compute its excitation and change state if necessary (states of other neurons not affected)

Bidirectional Associative Memory (BAM)

$$
\text { neuron } \begin{aligned}
i \text { of left layer has changed } & \Rightarrow \operatorname{sgn}\left(x_{i}\right) \neq \operatorname{sgn}\left(b_{i}\right) \\
& \Rightarrow x_{i} \text { was updated to } \widetilde{x}_{i}=-x_{i}
\end{aligned}
$$

$$
E(x, y)-E(\tilde{x}, y)=-\frac{1}{2} \underbrace{b_{i}\left(x_{i}-\tilde{x}_{i}\right)}_{<0}>0
$$

x_{i}	b_{i}	$x_{i}-\widetilde{x}_{i}$
-1	>0	<0
+1	<0	>0

use analogous argumentation if neuron of right layer has changed
\Rightarrow every update (change of state) decreases energy function
\Rightarrow since number of different bipolar vectors is finite update stops after finite \#updates
remark: dynamics of BAM get stable in local minimum of energy function!

Hopfield Network

special case of BAM but proposed earlier (1982)

characterization:

- neurons preserve state until selected at random for update

- n neurons fully connected
- symmetric weight matrix
- no self-loops (\rightarrow zero main diagonal entries)
- thresholds θ, neuron i fires if excitations larger than θ_{i}

transition: select index k at random, new state is $\tilde{x}=\operatorname{sgn}(x W-\theta)$

$$
\text { where } \tilde{x}=\left(x_{1}, \ldots, x_{k-1}, \tilde{x}_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

energy of state x is $E(x)=-\frac{1}{2} x W x^{\prime}+\theta x^{\prime}$

Hopfield Network

Lecture 04

Theorem:

Hopfield network converges to local minimum of energy function after a finite number of updates.

Proof: \quad assume that x_{k} has been updated $\Rightarrow \tilde{x}_{k}=-x_{k}$ and $\tilde{x}_{i}=x_{i}$ for $i \neq k$
$E(x)-E(\tilde{x})=-\frac{1}{2} x W x^{\prime}+\theta x^{\prime}+\frac{1}{2} \tilde{x} W \tilde{x}^{\prime}-\theta \tilde{x}^{\prime}$
$=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j} x_{i} x_{j}+\sum_{i=1}^{n} \theta_{i} x_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j} \tilde{x}_{i} \tilde{x}_{j}-\sum_{i=1}^{n} \theta_{i} \tilde{x}_{i}$
$=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(x_{i} x_{j}-\tilde{x}_{i} \tilde{x}_{j}\right)+\sum_{i=1}^{n} \theta_{i} \underbrace{\left(x_{i}-\tilde{x}_{i}\right)}_{=0 \text { if } \mathrm{i} \neq \mathrm{k}}$
$=-\frac{1}{2} \sum_{\substack{i=1 \\ i \neq k}}^{n} \sum_{\substack{ \\\|_{i}}}^{n} w_{i j}\left(x_{i} x_{j}-\tilde{x}_{i} \tilde{x}_{j}\right)-\frac{1}{2} \sum_{j=1}^{n} w_{\substack{ \\x_{i}}}^{n}\left(x_{k} x_{j}-\tilde{x}_{k} \tilde{x}_{j}\right)+\theta_{k}\left(x_{k}-\tilde{x}_{k}\right)$

$$
>0 \text { if } x_{k}<0 \text { and vice versa }
$$

$$
\begin{aligned}
& =-\frac{1}{2} \sum_{\substack{i=1 \\
i \neq k}}^{n} \sum_{j=1}^{n} w_{i j} x_{i} \underbrace{\left(x_{j}-\tilde{x}_{j}\right)}_{=0 \text { if } \mathrm{j} \neq \mathrm{k}}-\frac{1}{2} \sum_{\substack{j=1 \\
j \neq k}}^{n} w_{k j} x_{j}\left(x_{k}-\tilde{x}_{k}\right)+\theta_{k}\left(x_{k}-\tilde{x}_{k}\right) \\
& =-\frac{1}{2} \sum_{\substack{i=1 \\
i \neq k}}^{n} w_{i k} x_{i}\left(x_{k}-\tilde{x}_{k}\right)-\frac{1}{2} \sum_{\substack{j=1 \\
j \neq k}}^{n} w_{k j} x_{j}\left(x_{k}-\tilde{x}_{k}\right)+\theta_{k}\left(x_{k}-\tilde{x}_{k}\right) \\
& =-\sum_{i=1}^{n} w_{i k} x_{i}\left(x_{k}-\tilde{x}_{k}\right)+\theta_{k}\left(x_{k}-\tilde{x}_{k}\right) \\
& =-\left(x_{k}-\tilde{x}_{k}\right)[\underbrace{\left[\sum_{i=1}^{n} w_{i k} x_{i}\right.}_{\text {excitation } \mathrm{e}_{\mathrm{k}}}-\theta_{k}]>0 \quad \begin{array}{l}
\text { since: } \\
\begin{array}{cccc}
x_{k} & x_{k}-\tilde{x}_{k} & e_{k}-\theta_{k} & \Delta E
\end{array} \\
\begin{array}{cccccc}
+1 & >0 & <0 & >0 \\
-1 & <0 & >0 & >0
\end{array}
\end{array}
\end{aligned}
$$

Hopfield Network

Application to Combinatorial Optimization

Idea:

- transform combinatorial optimization problem as objective function with $x \in\{-1,+1\}^{n}$
- rearrange objective function to look like a Hopfield energy function
- extract weights W and thresholds θ from this energy function
- initialize a Hopfield net with these parameters W and θ
- run the Hopfield net until reaching stable state (= local minimizer of energy function)
- stable state is local minimizer of combinatorial optimization problem

Hopfield Network

Example I: Linear Functions

$$
f(x)=\sum_{i=1}^{n} c_{i} x_{i} \quad \rightarrow \min !\quad\left(x_{i} \in\{-1,+1\}\right)
$$

Evidently: $E(x)=f(x)$ with $W=0$ and $\theta=c$
\Downarrow
choose $x^{(0)} \in\{-1,+1\}^{n}$
set iteration counter $t=0$
repeat
choose index k at random

$$
x_{k}^{(t+1)}=\operatorname{sgn}\left(x^{(t)} \cdot W_{\cdot, k}-\theta_{k}\right)=\operatorname{sgn}\left(x^{(t)} \cdot 0-c_{k}\right)=-\operatorname{sgn}\left(c_{k}\right)=\left\{\begin{aligned}
-1 & \text { if } c_{k}>0 \\
+1 & \text { if } c_{k}<0
\end{aligned}\right.
$$

increment t
until reaching fixed point
\Rightarrow fixed point reached after $\Theta(\mathrm{n} \log \mathrm{n})$ iterations on average

Hopfield Network

Example II: MAXCUT

given: graph with n nodes and symmetric weights $\omega_{\mathrm{ij}}=\omega_{\mathrm{ji}}$, $\omega_{\mathrm{ii}}=0$, on edges
task: find a partition $\mathrm{V}=\left(\mathrm{V}_{0}, \mathrm{~V}_{1}\right)$ of the nodes such that the weighted sum of edges with one endpoint in V_{0} and one endpoint in V_{1} becomes maximal

$$
\text { encoding: } \forall \mathrm{i}=1, \ldots, \mathrm{n}: \quad \mathrm{y}_{\mathrm{i}}=0 \Leftrightarrow \text { node } \mathrm{i} \text { in set } \mathrm{V}_{0} ; \quad \mathrm{y}_{\mathrm{i}}=1 \Leftrightarrow \text { node } \mathrm{i} \text { in set } \mathrm{V}_{1}
$$

objective function: $f(y)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j}\left[y_{i}\left(1-y_{j}\right)+y_{j}\left(1-y_{i}\right)\right] \quad \rightarrow \max !$

preparations for applying Hopfield network

step 1: conversion to minimization problem
step 2: transformation of variables
step 3: transformation to "Hopfield normal form"
step 4: extract coefficients as weights and thresholds of Hopfield net

Hopfield Network

Example II: MAXCUT (continued)

step 1: conversion to minimization problem

$$
\Rightarrow \text { multiply function with }-1 \quad \Rightarrow \mathrm{E}(\mathrm{y})=-\mathrm{f}(\mathrm{y}) \quad \rightarrow \text { min! }
$$

step 2: transformation of variables

$$
\Rightarrow y_{i}=\left(x_{i}+1\right) / 2
$$

$$
\Rightarrow f(x)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j}\left[\frac{x_{i}+1}{2}\left(1-\frac{x_{j}+1}{2}\right)+\frac{x_{j}+1}{2}\left(1-\frac{x_{i}+1}{2}\right)\right]
$$

$$
=\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j}\left[1-x_{i} x_{j}\right]
$$

$$
=\underbrace{\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j}}-\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j} x_{i} x_{j}
$$

constant value (does not affect location of optimal solution)

Hopfield Network

Example II: MAXCUT (continued)

step 3: transformation to "Hopfield normal form"

$$
\begin{aligned}
E(x) & =\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j} x_{i} x_{j}=-\frac{1}{2} \sum_{i=1}^{n} \sum_{i \neq 1}^{n} \underbrace{\left(-\frac{1}{2} \omega_{i j}\right.}_{\mathrm{w}_{\mathrm{ij}}}) x_{i} x_{j} \\
& =-\frac{1}{2} x^{\prime} W x+\theta^{\prime} x
\end{aligned}
$$

step 4: extract coefficients as weights and thresholds of Hopfield net
$w_{i j}=-\frac{\omega_{i j}}{2}$ for $i \neq j, \quad w_{i i}=0, \quad \theta_{i}=0$
remark: $\omega_{i j}$: weights in graph - $w_{i j}:$ weights in Hopfield net

