Geometric Set Cover

sampling with reweighting
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Example: Covering points with disk

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering the points.

range space:
(P, Dp)

where D\p := {PNd|dc D}

minimum set cover:
smallest D C D|p suchthat|J,.p,d =P

What do you know about the set cover problem?
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Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: 3 range in optimal solution with > n /k point
=> first range in greedy solution contains > n/k points
= < n(1 — 1) points remain uncovered

iterate argument: after 7 steps greedy algorithm covers all but
<n(l-3)

all points covered whenn(1 — +)* < 1
note: (1 — %)k <1le

=> all points covered fori = klnn = O(klogn)
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Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

Can we do better?

no, for general set systems: no polynomial-time
approximation algorithm with approximation
factor better that O(logn) (if P #% N P)

yes, for geometric range spaces
today: algorithm with solution of size O(k log k)



Dual range spaces

warm-up: covering points that are in many ranges
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Dual range space

Given: a set of points /” and a set of disks D, asks for e-net in
find a smallest set of disks covering dual range space

the points that are in at least £| D] ranges

Dual range space of (X, R): (R, X™), A

where X* ={R, |pe X}, R, ={re R|per} Q
- * S

VC-dimension of dual range space: 9 ’.

c-net theorem: ”

A random sample of the disks of size O (5 log = )

an £-net with probability > 1/2



Dual range space: matrix interpretation

incidence matrix of range space
Py p1 P2 P3 P4

Diy1 1 1 0 0
D1 1 1 0 1
Ds 1 1 0 1 0



Dual range space: matrix interpretation

We obtain the matrix of the dual range
space by transposition +
removing/merging duplicates

Dy Dy Ds
py 1 1 1
incidence matrix of range space
Py p1 P2 P3 P4
Di1 1100 p2 1 1 0
D1 110 1 p3 0 0 1

D:;1 1 010 pse O 1 0



Dual range space: VC-dimension

If a range space has VC-dim o, then the dual VC-dim 0* < 20+1

...orinshort: if 0 is constant, sois 0*.
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Dual range space: VC-dimension

If a range space has VC-dim o, then the dual VC-dim 0* < 20+1

Why?
Suppose 0* > 29" and prove that § > ¢/, e.qg., below 0* = 4 = 27
There are 0* rows (= ranges) for which all 20" columns occur

Take columns that together count from0to0* — 1 = 20" — 1in binary
These are ' = log * shattered columns = § > ¢’
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In the previous proof: Could we have picked two different columns?

no
yes, we could have picked the second column differently

yes, we could have picked completely different columns
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Approximation Algorithm for Geometric Set Cover

sampling ranges with reweighing



The algorithm: preparation

Given (X, R),n = |X|, m = |R/|, and dual VC-dimension ¢*, the algorithm
computes a set cover which uses O(6*k - log(d*k)) sets where k is the number
of sets used by the optimal solution.



The algorithm: preparation

Given (X, R), n = , and dual VC-dimension 0™, the algorithm
computes a set cover which uses O(0*k - log(d*k)) sets where k is the number
of sets used by the optimal solution.

Algorithm assumes k is known. We runitfork =1,2,4,8,. 'Q

until it finds a solution &‘

Picke = 4 ’
&

Assign each range r a weight W (r). Initially, W (r) =

W (R ) is the total weight of all the ranges in R

R’ is a random subset of size O((6* /&) log(d* /¢))

Each range r € R has probability W (r) /W (R) of being selected



The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,

5. sample new R’

6. return R’
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The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))

2. While R’ does not cover all points in U
3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,

5. sample new R’
6. return R’

Intuition:

1. With probability 1/2: R’ is e-net
— doubling happens often, but to very few ranges

2. W(R) grows slowly, W ('R, ) for uncovered p
exponentially — eventually p covered

red ={1,2,3,4,5,7,8}
green =41,2,7,8}

purple = {1, 2
blue = {2, 3,5,
pink = {1,2,3



Ingredients of argument

after doubling 7 times:

give upper bound on W (R)

give lower bound on weight of optimal set

compare weight of optimal and W (R) to derive bound on ¢ < 2k log(m/k)
conclude that the algorithm terminates successfully
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Ingredients of argument

after doubling 7 times:

give upper bound on W (R)
m = |R|

Wy = m and W; = the weight after jth doubling
weight of R, doubled if W(R,) < eW (R)
W@' < (1+8)Wi_1 — (1—|—8)i°m Sm-esi
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after doubling 7 times:

give upper bound on W(R) <m - e
give lower bound on weight of optimal set

t;(7) is the times the weight of 5" range in the optimal solution was doubled

the weight of the optimal set at the i*” iteration is Zle oti(J)
20 4 9b > 9. ola+b)/2]
To minimize the weight of the optimal set#;(1) = t;(2) = - -- = t;(k)

minimal weight of the optimal set > k2L%/%.
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Ingredients of argument

after doubling 7 times:

give upper bound on W (R) < m - e

give lower bound on weight of optimal set > L2Li/k]

compare weight of optimal and W ('R) to derive bound on ¢ < 2k log(m/k)
conclude that the algorithm terminates successfully

R’ is e-net with probability > 1/2:
expected # iterations < 4k log(m/k)
# iterations < 8k log(m/k) with high prob. (Chernoff)

If we need more iterations, we can assume k was
guessed too small, and we double &
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logn = log | X|
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How many values do we test for k?

logn = log | X|
logm = log |R|

min(logm, logn)



Summary for Algorithm

Given (X, R) withn = |U|, m = |R|, and dual shattering dimension §*, we can
compute a set cover which uses O(0*k - log(0*k)) sets where k is the number
of sets used by the optimal solution. The run time is

O((m +nd*k - log(d*k)) - log(m/k) - log(n)) with high probability assuming
we can decide if a pointis inside a range in constant time.




Application to the art gallery problem

covering simple polygons with guards
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The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | g € P,pg C P}  aqguardatpseesallof Vp(p)
Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Question: Which sets cover the polygon?

G1 = {blue}

Go = {blue,red}

G3 = {blue, green}
G4 = {blue, green, red}

goal: cover with as few
Vp(p) as possible
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Compute range space

1. Calculate all visibility polygons for the vertices of P

2. Create arrangement of visibility polygons

3. Place a point in each face of the arrangement (or simply take set of faces)

4. Label each point/faces for clarity X = {1,2,3,4,5,6,7,8}

5. For visibility polygons create group of visible points

red =41,2,3,4,5,7,8}

green =41,2,7,8}

S1=12,7,8}

So =411,2,7,8}

> Ss=11,2,3,4,7,8}
S, ={7,8}

10




Compute range space

1. Calculate all visibility polygons for the vertices of P

2. Create arrangement of visibility polygons

3. Place a point in each face of the arrangement (or simply take set of faces)

4. Label each point/faces for clarity X = {1,2,3,4,5,6,7,8}

5. For visibility polygons create group of visible points

red =41,2,3,4,5,7,8}

green =41,2,7,8}
={1,2,3,4,7,8}

1° purple ={1,2,3,4,5,6}
blue = {2,3,5,6}
/ pink ={1,2,3,4,5,6,7}




Compute range space

1. Calculate all visibility polygons for the vertices of P

2. Create arrangement of visibility polygons

3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity X = {1,2,3,4,5,6,7,8}

5. For visibility polygons create group of visible points
red =41,2,3,4,5,7,8}
green =41,2,7,8}

' —{1,2,3,4,7,8)
1° purple ={1,2,3,4,5,6}
blue = {2,3,5,6}
/° pink ={1,2,3,4,5,6,7}
R = A{red, green, ,

purple, blue, pink}
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Compute range space

art gallery problem: set cover problem on (X, R)

dual VC-dimension is constant (see exercises)

Previous algorithm applies X = {1, 2,3,4,5,6,7, 8}

red =41,2,3,4,5,7,8}
green =41,2,7,8}

' —{1,2,3,4,7,8)
I° purple ={1,2,3,4,5,6}
blue = {2,3,5,6}
/° pink ={1,2,3,4,5,6,7}
R = A{red, green, ,

purple, blue, pink}



Summary

general set cover problem: O(log n)-approximation using greedy algorithm

geometric set cover problem: O(log k)-approximation using sampling with
reweighting (for finite VC-dimension)

applications: covering with disks and art gallery problem



