
Geometric Set Cover
sampling with reweighting

Example: Covering points with disk

Given: a set of points P and a set of disksD,
find a smallest set of disks covering the points.

Example: Covering points with disk

Given: a set of points P and a set of disksD,
find a smallest set of disks covering the points.

Example: Covering points with disk

Given: a set of points P and a set of disksD,
find a smallest set of disks covering the points.

range space:
?

Example: Covering points with disk

Given: a set of points P and a set of disksD,
find a smallest set of disks covering the points.

range space:
(P,D|P)

Example: Covering points with disk

Given: a set of points P and a set of disksD,
find a smallest set of disks covering the points.

range space:
(P,D|P)

whereD|P := {P ∩ d | d ∈ D}

Example: Covering points with disk

Given: a set of points P and a set of disksD,
find a smallest set of disks covering the points.

range space:
(P,D|P)

whereD|P := {P ∩ d | d ∈ D}

minimum set cover:
smallestD ⊂ D|P such that

⋃
d∈D d = P

Example: Covering points with disk

Given: a set of points P and a set of disksD,
find a smallest set of disks covering the points.

range space:
(P,D|P)

whereD|P := {P ∩ d | d ∈ D}

minimum set cover:
smallestD ⊂ D|P such that

⋃
d∈D d = P

Question: What do you know about the set cover problem?

Greedy Approximation

Greedy Algorithm:
While ∃ uncovered points, select range that contains the most uncovered points

Greedy Approximation

Greedy Algorithm:
While ∃ uncovered points, select range that contains the most uncovered points

Quiz
What is the size of the greedy solution?

A 2

B 3

C 4

Greedy Approximation

Greedy Algorithm:
While ∃ uncovered points, select range that contains the most uncovered points

Quiz
What is the size of the greedy solution?

A 2

B 3

C 4

Greedy Approximation

Greedy Algorithm:
While ∃ uncovered points, select range that contains the most uncovered points

2

8

15

13Quiz
What is the size of the greedy solution?

A 2

B 3

C 4

Greedy Approximation

Greedy Algorithm:
While ∃ uncovered points, select range that contains the most uncovered points

0

3

2Quiz
What is the size of the greedy solution?

A 2

B 3

C 4

Greedy Approximation

Greedy Algorithm:
While ∃ uncovered points, select range that contains the most uncovered points

2Quiz
What is the size of the greedy solution?

A 2

B 3

C 4

Greedy Approximation

Greedy Algorithm:
While ∃ uncovered points, select range that contains the most uncovered points

Quiz
What is the size of the greedy solution?

A 2

B 3

C 4

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

proof sketch

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: ∃ range in optimal solution with≥ n/k points

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: ∃ range in optimal solution with≥ n/k points
⇒ first range in greedy solution contains≥ n/k points

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: ∃ range in optimal solution with≥ n/k points
⇒ first range in greedy solution contains≥ n/k points
⇒≤ n(1− 1

k
) points remain uncovered

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: ∃ range in optimal solution with≥ n/k points
⇒ first range in greedy solution contains≥ n/k points
⇒≤ n(1− 1

k
) points remain uncovered

iterate argument: after i steps greedy algorithm covers all but
≤ n(1− 1

k
)i

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: ∃ range in optimal solution with≥ n/k points
⇒ first range in greedy solution contains≥ n/k points
⇒≤ n(1− 1

k
) points remain uncovered

iterate argument: after i steps greedy algorithm covers all but
≤ n(1− 1

k
)i

all points covered when n(1− 1
k
)i < 1

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: ∃ range in optimal solution with≥ n/k points
⇒ first range in greedy solution contains≥ n/k points
⇒≤ n(1− 1

k
) points remain uncovered

iterate argument: after i steps greedy algorithm covers all but
≤ n(1− 1

k
)i

all points covered when n(1− 1
k
)i < 1

note:
(
1− 1

k

)k
< 1/e

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: ∃ range in optimal solution with≥ n/k points
⇒ first range in greedy solution contains≥ n/k points
⇒≤ n(1− 1

k
) points remain uncovered

iterate argument: after i steps greedy algorithm covers all but
≤ n(1− 1

k
)i

all points covered when n(1− 1
k
)i < 1

note:
(
1− 1

k

)k
< 1/e

⇒ all points covered for i = k lnn = O(k logn)

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

Can we do better?

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

Can we do better?

no, for general set systems: no polynomial-time
approximation algorithm with approximation
factor better thatO(log n) (if P 6= NP)

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

Can we do better?

no, for general set systems: no polynomial-time
approximation algorithm with approximation
factor better thatO(log n) (if P 6= NP)

yes, for geometric range spaces

Greedy Approximation
size of greedy solution: O(k log n),
n: number of points, k: size of optimal solution

Can we do better?

no, for general set systems: no polynomial-time
approximation algorithm with approximation
factor better thatO(log n) (if P 6= NP)

yes, for geometric range spaces
today: algorithm with solution of sizeO(k log k)

Dual range spaces
warm-up: covering points that are in many ranges

Dual range space

Given: a set of points P and a set of disksD,
find a smallest set of disks covering
the points that are in at least ε|D| ranges.

Dual range space

Given: a set of points P and a set of disksD,
find a smallest set of disks covering
the points that are in at least ε|D| ranges.

Dual range space of (X,R): (R, X∗),
whereX∗ = {Rp | p ∈ X},Rp = {r ∈ R | p ∈ r}

Dual range space

Given: a set of points P and a set of disksD,
find a smallest set of disks covering
the points that are in at least ε|D| ranges.

Dual range space of (X,R): (R, X∗),
whereX∗ = {Rp | p ∈ X},Rp = {r ∈ R | p ∈ r}

Here: R = D,
dual ranges: set of disks with a common point

Dual range space

Given: a set of points P and a set of disksD,
find a smallest set of disks covering
the points that are in at least ε|D| ranges.

Dual range space of (X,R): (R, X∗),
whereX∗ = {Rp | p ∈ X},Rp = {r ∈ R | p ∈ r}

Here: R = D,
dual ranges: set of disks with a common point

Intuition:
each face in the arrangement of disks corresponds to a
dual range, namely to set of disks that include this face

a face

Dual range space

Given: a set of points P and a set of disksD,
find a smallest set of disks covering
the points that are in at least ε|D| ranges.

Dual range space of (X,R): (R, X∗),
whereX∗ = {Rp | p ∈ X},Rp = {r ∈ R | p ∈ r}

Here: R = D,
dual ranges: set of disks with a common point

Intuition:
each face in the arrangement of disks corresponds to a
dual range, namely to set of disks that include this face

a face

Dual range space

Given: a set of points P and a set of disksD,
find a smallest set of disks covering
the points that are in at least ε|D| ranges.

Dual range space of (X,R): (R, X∗),
whereX∗ = {Rp | p ∈ X},Rp = {r ∈ R | p ∈ r}

Here: R = D,
dual ranges: set of disks with a common point

Intuition:
each face in the arrangement of disks corresponds to a
dual range, namely to set of disks that include this face

a face

asks for ε-net in
dual range space

Dual range space

Given: a set of points P and a set of disksD,
find a smallest set of disks covering
the points that are in at least ε|D| ranges.

Dual range space of (X,R): (R, X∗),
whereX∗ = {Rp | p ∈ X},Rp = {r ∈ R | p ∈ r}

asks for ε-net in
dual range space

VC-dimension of dual range space: δ∗

ε-net theorem:
A random sample of the disks of sizeO

(
δ∗

ε log 1
ε

)
is

an ε-net with probability≥ 1/2

Dual range space: matrix interpretation

p′1

p1p2

p3

p4

incidence matrix of range space

D1

D2

D3

D1

D2

D3

p′1

1

1

1

p1

1

1

1

p2

1

1

0

p3

0

0

1

p4

0

1

0

Dual range space: matrix interpretation

p′1

p1p2

p3

p4

incidence matrix of range space

D1

D2

D3

D1

D2

D3

p′1

1

1

1

p1

1

1

1

p2

1

1

0

p3

0

0

1

p4

0

1

0

We obtain the matrix of the dual range
space by transposition +
removing/merging duplicates

p′1

p1

p2

p3

p4

D1

1

1

1

0

0

D2

1

1

1

0

1

D3

1

1

0

1

0

Dual range space: VC-dimension

If a range space has VC-dim δ, then the dual VC-dim δ∗ < 2δ+1

. . . or in short: if δ is constant, so is δ∗.

Dual range space: VC-dimension

If a range space has VC-dim δ, then the dual VC-dim δ∗ < 2δ+1

Why?
Suppose δ∗ ≥ 2δ

′
and prove that δ ≥ δ′, e.g., below δ∗ = 4 = 22

p1 p2 . . . p16
r1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Dual range space: VC-dimension

If a range space has VC-dim δ, then the dual VC-dim δ∗ < 2δ+1

Why?
Suppose δ∗ ≥ 2δ

′
and prove that δ ≥ δ′, e.g., below δ∗ = 4 = 22

There are δ∗ rows (= ranges) for which all 2δ
∗
columns occur

p1 p2 . . . p16
r1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Dual range space: VC-dimension

If a range space has VC-dim δ, then the dual VC-dim δ∗ < 2δ+1

Why?
Suppose δ∗ ≥ 2δ

′
and prove that δ ≥ δ′, e.g., below δ∗ = 4 = 22

There are δ∗ rows (= ranges) for which all 2δ
∗
columns occur

Take columns that together count from 0 to δ∗ − 1 = 2δ
′ − 1 in binary

p1 p2 . . . p16
r1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Dual range space: VC-dimension

If a range space has VC-dim δ, then the dual VC-dim δ∗ < 2δ+1

Why?
Suppose δ∗ ≥ 2δ

′
and prove that δ ≥ δ′, e.g., below δ∗ = 4 = 22

There are δ∗ rows (= ranges) for which all 2δ
∗
columns occur

Take columns that together count from 0 to δ∗ − 1 = 2δ
′ − 1 in binary

p1 p2 . . . p16
r1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

These are δ′ = log δ∗ shattered columns⇒ δ ≥ δ′

Quiz

p1 p2 . . . p16
r1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

In the previous proof: Could we have picked two different columns?

A no

B yes, we could have picked the second column differently

C yes, we could have picked completely different columns

Quiz

p1 p2 . . . p16
r1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

In the previous proof: Could we have picked two different columns?

A no

B yes, we could have picked the second column differently

C yes, we could have picked completely different columns

e.g.

Approximation Algorithm for Geometric Set Cover
sampling ranges with reweighing

The algorithm: preparation

Given (X,R), n = |X|,m = |R|, and dual VC-dimension δ∗, the algorithm
computes a set cover which usesO(δ∗k · log(δ∗k)) sets where k is the number
of sets used by the optimal solution.

The algorithm: preparation

Given (X,R), n = |X|,m = |R|, and dual VC-dimension δ∗, the algorithm
computes a set cover which usesO(δ∗k · log(δ∗k)) sets where k is the number
of sets used by the optimal solution.

Pick ε = 1
4k

Assign each range r a weightW (r). Initially,W (r) = 1

W (R) is the total weight of all the ranges inR
R′ is a random subset of sizeO((δ∗/ε) log(δ∗/ε))
Each range r ∈ R has probabilityW (r)/W (R) of being selected

Algorithm assumes k is known. We run it for k = 1, 2, 4, 8, . . .
until it finds a solution

The algorithm

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))

sampleR′, e.g.,R′ = {red, green}

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

R′ does not coverX , namely 6 is not covered
sampleR′, e.g.,R′ = {red, green}

2. WhileR′ does not cover all points in U

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

R′ does not coverX , namely 6 is not covered
sampleR′, e.g.,R′ = {red, green}

3. let p ∈ U be the point not covered byR′

R6 = {purple, blue, pink}

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

R′ does not coverX , namely 6 is not covered
sampleR′, e.g.,R′ = {red, green}

R6 = {purple, blue, pink}

4. if (W (Rp) < εW (R)): double all weight ofRp

W (R6) = 3 < 4 = (2/3) · 6 = εW (R)

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

R′ does not coverX , namely 6 is not covered
sampleR′, e.g.,R′ = {red, green}

R6 = {purple, blue, pink}

4. if (W (Rp) < εW (R)): double all weight ofRp

W (R6) = 3 < 4 = (2/3) · 6 = εW (R) double

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

R′ does not coverX , namely 6 is not covered
sampleR′, e.g.,R′ = {red, green}

R6 = {purple, blue, pink}

4. if (W (Rp) < εW (R)): double all weight ofRp

W (R6) = 3 < 4 = (2/3) · 6 = εW (R) double

2
2
2

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

2
2
2

5. sample newR′

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

2
2
2

5. sample newR′

sampleR′, e.g.,R′ = {purple, blue}

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

2. WhileR′ does not cover all points in U

2
2
2

sampleR′, e.g.,R′ = {purple, blue}
R′ does not coverX , namely 7 is not covered

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

3. let p ∈ U be the point not covered byR′

2
2
2

sampleR′, e.g.,R′ = {purple, blue}
R′ does not coverX , namely 7 is not covered
R7 = {red, green, orange, pink}

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

3. let p ∈ U be the point not covered byR′

2
2
2

sampleR′, e.g.,R′ = {purple, blue}
R′ does not coverX , namely 7 is not covered
R7 = {red, green, orange, pink}
W (R7) = 5 < 6 = (2/3) · 9 = εW (R)

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

4. if (W (Rp) < εW (R)): double all weight ofRp

2
2
2

sampleR′, e.g.,R′ = {purple, blue}
R′ does not coverX , namely 7 is not covered
R7 = {red, green, orange, pink}
W (R7) = 5 < 6 = (2/3) · 9 = εW (R) double

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

4. if (W (Rp) < εW (R)): double all weight ofRp

2
2
2

sampleR′, e.g.,R′ = {purple, blue}
R′ does not coverX , namely 7 is not covered
R7 = {red, green, orange, pink}
W (R7) = 5 < 6 = (2/3) · 9 = εW (R) double

2
2
4

2
2
2

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

2
2
2

5. sample newR′

2
2
4

2
2
2sampleR′, e.g.,R′ = {red, pink}

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

Let ε = 2/3 and |R′| = 2

2
2
2

2
2
4

2
2
2sampleR′, e.g.,R′ = {red, pink}

R′ coversX , We are done

6. returnR′

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

2
2
2

2
2
4

2
2
2

intuition:

1. With probability 1/2: R′ is ε-net

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

2
2
2

2
2
4

2
2
2

intuition:

1. With probability 1/2: R′ is ε-net
→ doubling happens often, but to very few ranges

The algorithm

1 blue = {2, 3, 5, 6}
1 purple = {1, 2, 3, 4, 5, 6}

1 pink = {1, 2, 3, 4, 5, 6, 7}

1. sampleR′ a random subset of sizeO((δ∗/ε) log(δ∗/ε))
2. WhileR′ does not cover all points in U
3. let p ∈ U be the point not covered byR′
4. if (W (Rp) < εW (R)): double all weight ofRp
5. sample newR′
6. returnR′

1 red = {1, 2, 3, 4, 5, 7, 8}
1 green = {1, 2, 7, 8}
1 orange = {1, 2, 3, 4, 7, 8}

6

8

2
3 1
4

5
7

W (r)

2
2
2

2
2
4

2
2
2

intuition:

1. With probability 1/2: R′ is ε-net
→ doubling happens often, but to very few ranges

2.W (R) grows slowly,W (Rp) for uncovered p
exponentially → eventually p covered

Ingredients of argument
after doubling i times:

give upper bound onW (R)
give lower bound on weight of optimal set
compare weight of optimal andW (R) to derive bound on i ≤ 2k log(m/k)

conclude that the algorithm terminates successfully

Ingredients of argument
after doubling i times:

give upper bound onW (R)

W0 = m andWi = the weight after ith doubling

m = |R|

Ingredients of argument
after doubling i times:

give upper bound onW (R)

W0 = m andWi = the weight after ith doubling

m = |R|

weight ofRp doubled ifW (Rp) < εW (R)

Wi ≤ (1 + ε)Wi−1 = (1 + ε)i ·m ≤ m · eεi

Ingredients of argument
after doubling i times:

give upper bound onW (R)
give lower bound on weight of optimal set
compare weight of optimal andW (R) to derive bound on i ≤ 2k log(m/k)

≤ m · eεi

Ingredients of argument
after doubling i times:

give upper bound onW (R) ≤ m · eεi

ti(j) is the times the weight of jth range in the optimal solution was doubled

the weight of the optimal set at the ith iteration is
∑k
j=1 2

ti(j)

give lower bound on weight of optimal set

Ingredients of argument
after doubling i times:

give upper bound onW (R) ≤ m · eεi

ti(j) is the times the weight of jth range in the optimal solution was doubled

the weight of the optimal set at the ith iteration is
∑k
j=1 2

ti(j)

give lower bound on weight of optimal set

To minimize the weight of the optimal set ti(1) = ti(2) = · · · = ti(k)

2a + 2b ≥ 2 · 2b(a+b)/2c

Ingredients of argument
after doubling i times:

give upper bound onW (R) ≤ m · eεi

ti(j) is the times the weight of jth range in the optimal solution was doubled

the weight of the optimal set at the ith iteration is
∑k
j=1 2

ti(j)

give lower bound on weight of optimal set

To minimize the weight of the optimal set ti(1) = ti(2) = · · · = ti(k)

2a + 2b ≥ 2 · 2b(a+b)/2c

minimal weight of the optimal set≥ k2bi/kc

Ingredients of argument
after doubling i times:

give upper bound onW (R)
give lower bound on weight of optimal set

≤ m · eεi
≥ k2bi/kc

Ingredients of argument
after doubling i times:

give upper bound onW (R)
give lower bound on weight of optimal set

≤ m · eεi
≥ k2bi/kc

⇒ k2bi/kc ≤ m · eεi = m · e(i/k)/4, since ε = 1
4k

optimal set⊂ R
compare weight of optimal andW (R) to derive upper bound on i

Ingredients of argument
after doubling i times:

give upper bound onW (R)
give lower bound on weight of optimal set

≤ m · eεi
≥ k2bi/kc

⇒ k2bi/kc ≤ m · eεi = m · e(i/k)/4, since ε = 1
4k

optimal set⊂ R
compare weight of optimal andW (R) to derive upper bound on i

⇒
(

2
e1/4

)i/k ≤ m/k

Ingredients of argument
after doubling i times:

give upper bound onW (R)
give lower bound on weight of optimal set

≤ m · eεi
≥ k2bi/kc

⇒ k2bi/kc ≤ m · eεi = m · e(i/k)/4, since ε = 1
4k

optimal set⊂ R
compare weight of optimal andW (R) to derive upper bound on i

⇒
(

2
e1/4

)i/k ≤ m/k
⇒ i/k ≤ log(m/k)/ log

(
2

e1/4

)
≤ 2 log(m/k)

Ingredients of argument
after doubling i times:

give upper bound onW (R)
give lower bound on weight of optimal set

≤ m · eεi
≥ k2bi/kc

⇒ k2bi/kc ≤ m · eεi = m · e(i/k)/4, since ε = 1
4k

optimal set⊂ R
compare weight of optimal andW (R) to derive upper bound on i

⇒
(

2
e1/4

)i/k ≤ m/k
⇒ i/k ≤ log(m/k)/ log

(
2

e1/4

)
≤ 2 log(m/k)

⇒ i ≤ 2k log(m/k)

Ingredients of argument
after doubling i times:

give upper bound onW (R)
give lower bound on weight of optimal set
compare weight of optimal andW (R) to derive bound on i ≤ 2k log(m/k)

≤ m · eεi
≥ k2bi/kc

conclude that the algorithm terminates successfully

R′ is ε-net with probability≥ 1/2:
expected # iterations≤ 4k log(m/k)

Ingredients of argument
after doubling i times:

give upper bound onW (R)
give lower bound on weight of optimal set
compare weight of optimal andW (R) to derive bound on i ≤ 2k log(m/k)

≤ m · eεi
≥ k2bi/kc

conclude that the algorithm terminates successfully

R′ is ε-net with probability≥ 1/2:
expected # iterations≤ 4k log(m/k)

iterations≤ 8k log(m/k) with high prob. (Chernoff)

Ingredients of argument
after doubling i times:

give upper bound onW (R)
give lower bound on weight of optimal set
compare weight of optimal andW (R) to derive bound on i ≤ 2k log(m/k)

≤ m · eεi
≥ k2bi/kc

conclude that the algorithm terminates successfully

R′ is ε-net with probability≥ 1/2:
expected # iterations≤ 4k log(m/k)

iterations≤ 8k log(m/k) with high prob. (Chernoff)

If we need more iterations, we can assume k was
guessed too small, and we double k

Quiz

How many values do we test for k?

A log n = log |X|

B logm = log |R|

C min(logm, log n)

Quiz

How many values do we test for k?

A log n = log |X|

B logm = log |R|

C min(logm, log n)

Summary for Algorithm

Given (X,R) with n = |U |,m = |R|, and dual shattering dimension δ∗, we can
compute a set cover which usesO(δ∗k · log(δ∗k)) sets where k is the number
of sets used by the optimal solution. The run time is
O((m+ nδ∗k · log(δ∗k)) · log(m/k) · log(n)) with high probability assuming
we can decide if a point is inside a range in constant time.

Application to the art gallery problem
covering simple polygons with guards

The art gallery problem: covering a polygon

Free placement of point p
Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Free placement of point p
Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Free placement of point p
Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Free placement of point p
Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Free placement of point p
Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Free placement of point p
Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Free placement of point p
Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Infinity many points in P
Restrict possible placement of p to a finite subset

Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Restrict placement of p to vertices of P

Infinity many points in P
Restrict possible placement of p to a finite subset

Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Restrict placement of p to vertices of P

Infinity many points in P
Restrict possible placement of p to a finite subset

Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Restrict placement of p to vertices of P

Infinity many points in P
Restrict possible placement of p to a finite subset

Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Restrict placement of p to vertices of P

Infinity many points in P
Restrict possible placement of p to a finite subset

Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Restrict placement of p to vertices of P

Infinity many points in P
Restrict possible placement of p to a finite subset

Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Restrict placement of p to vertices of P

Infinity many points in P
Restrict possible placement of p to a finite subset

Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

Restrict placement of p to vertices of P

Infinity many points in P
Restrict possible placement of p to a finite subset

Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

G1 = {blue}
G2 = {blue, red}
G3 = {blue, green}
G4 = {blue, green, red}

Question: Which sets cover the polygon?
Restrict placement of p to vertices of P

Infinity many points in P
Restrict possible placement of p to a finite subset

Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

G1 = {blue}
G2 = {blue, red}
G3 = {blue, green}
G4 = {blue, green, red}

Question: Which sets cover the polygon?
Restrict placement of p to vertices of P

Infinity many points in P
Restrict possible placement of p to a finite subset

Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

The art gallery problem: covering a polygon

G1 = {blue}
G2 = {blue, red}
G3 = {blue, green}
G4 = {blue, green, red}

Question: Which sets cover the polygon?
Restrict placement of p to vertices of P

Infinity many points in P
Restrict possible placement of p to a finite subset

Point p covers VP (p) = {q | q ∈ P, pq ⊆ P} a guard at p sees all of VP (p)

goal: cover with as few
VP (p) as possible

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)

Compute range space

1
2

3
4

5
6

7
8

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity

Compute range space

1
2

3
4

5
6

7
8

X = {1, 2, 3, 4, 5, 6, 7, 8}

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity

Compute range space

1
2

3
4

5
6

7
8

red = {1, 2, 3, 4, 5, 7, 8}

X = {1, 2, 3, 4, 5, 6, 7, 8}

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity
5. For visibility polygons create group of visible points

Compute range space

1
2

3
4

5
6

7
8

red = {1, 2, 3, 4, 5, 7, 8}

X = {1, 2, 3, 4, 5, 6, 7, 8}

green = {?}
S1 = {2, 7, 8}
S2 = {1, 2, 7, 8}
S3 = {1, 2, 3, 4, 7, 8}
S4 = {7, 8}

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity
5. For visibility polygons create group of visible points

Compute range space

1
2

3
4

5
6

7
8

red = {1, 2, 3, 4, 5, 7, 8}
green = {1, 2, 7, 8}

X = {1, 2, 3, 4, 5, 6, 7, 8}

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity
5. For visibility polygons create group of visible points

S1 = {2, 7, 8}
S2 = {1, 2, 7, 8}
S3 = {1, 2, 3, 4, 7, 8}
S4 = {7, 8}

Compute range space

1
2

3
4

5
6

7
8

red = {1, 2, 3, 4, 5, 7, 8}
green = {1, 2, 7, 8}

blue = {2, 3, 5, 6}

orange = {1, 2, 3, 4, 7, 8}
purple = {1, 2, 3, 4, 5, 6}

pink = {1, 2, 3, 4, 5, 6, 7}

X = {1, 2, 3, 4, 5, 6, 7, 8}

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity
5. For visibility polygons create group of visible points

Compute range space

1
2

3
4

5
6

7
8

red = {1, 2, 3, 4, 5, 7, 8}
green = {1, 2, 7, 8}

blue = {2, 3, 5, 6}

orange = {1, 2, 3, 4, 7, 8}
purple = {1, 2, 3, 4, 5, 6}

pink = {1, 2, 3, 4, 5, 6, 7}

X = {1, 2, 3, 4, 5, 6, 7, 8}

R = {red, green, orange,
purple, blue, pink}

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity
5. For visibility polygons create group of visible points

Compute range space

1
2

3
4

5
6

7
8

red = {1, 2, 3, 4, 5, 7, 8}
green = {1, 2, 7, 8}

blue = {2, 3, 5, 6}

orange = {1, 2, 3, 4, 7, 8}
purple = {1, 2, 3, 4, 5, 6}

pink = {1, 2, 3, 4, 5, 6, 7}

X = {1, 2, 3, 4, 5, 6, 7, 8}

R = {red, green, orange,
purple, blue, pink}

art gallery problem: set cover problem on (X,R)

Compute range space

1
2

3
4

5
6

7
8

red = {1, 2, 3, 4, 5, 7, 8}
green = {1, 2, 7, 8}

blue = {2, 3, 5, 6}

orange = {1, 2, 3, 4, 7, 8}
purple = {1, 2, 3, 4, 5, 6}

pink = {1, 2, 3, 4, 5, 6, 7}

X = {1, 2, 3, 4, 5, 6, 7, 8}

R = {red, green, orange,
purple, blue, pink}

art gallery problem: set cover problem on (X,R)

Compute range space

1
2

3
4

5
6

7
8

red = {1, 2, 3, 4, 5, 7, 8}
green = {1, 2, 7, 8}

blue = {2, 3, 5, 6}

orange = {1, 2, 3, 4, 7, 8}
purple = {1, 2, 3, 4, 5, 6}

pink = {1, 2, 3, 4, 5, 6, 7}

X = {1, 2, 3, 4, 5, 6, 7, 8}

R = {red, green, orange,
purple, blue, pink}

art gallery problem: set cover problem on (X,R)

dual VC-dimension is constant (see exercises)

Compute range space

1
2

3
4

5
6

7
8

red = {1, 2, 3, 4, 5, 7, 8}
green = {1, 2, 7, 8}

blue = {2, 3, 5, 6}

orange = {1, 2, 3, 4, 7, 8}
purple = {1, 2, 3, 4, 5, 6}

pink = {1, 2, 3, 4, 5, 6, 7}

X = {1, 2, 3, 4, 5, 6, 7, 8}

R = {red, green, orange,
purple, blue, pink}

art gallery problem: set cover problem on (X,R)

dual VC-dimension is constant (see exercises)

Previous algorithm applies

Summary

general set cover problem: O(log n)-approximation using greedy algorithm

geometric set cover problem: O(log k)-approximation using sampling with
reweighting (for finite VC-dimension)

applications: covering with disks and art gallery problem

