Geometric Set Cover

sampling with reweighting

Example: Covering points with disk

Given: a set of points P and a set of disks \mathcal{D}, find a smallest set of disks covering the points.

Example: Covering points with disk

Given: a set of points P and a set of disks \mathcal{D}, find a smallest set of disks covering the points.

Example: Covering points with disk

Given: a set of points P and a set of disks \mathcal{D}, find a smallest set of disks covering the points.
range space:

Example: Covering points with disk

Given: a set of points P and a set of disks \mathcal{D}, find a smallest set of disks covering the points.
range space:
$\left(P, \mathcal{D}_{\mid P}\right)$

Example: Covering points with disk

Given: a set of points P and a set of disks \mathcal{D}, find a smallest set of disks covering the points.
range space:
$\left(P, \mathcal{D}_{\mid P}\right)$
where $\mathcal{D}_{\mid P}:=\{P \cap d \mid d \in \mathcal{D}\}$

Example: Covering points with disk

Given: a set of points P and a set of disks \mathcal{D}, find a smallest set of disks covering the points.
range space:
$\left(P, \mathcal{D}_{\mid P}\right)$
where $\mathcal{D}_{\mid P}:=\{P \cap d \mid d \in \mathcal{D}\}$
minimum set cover:
smallest $D \subset \mathcal{D}_{\mid P}$ such that $\bigcup_{d \in D} d=P$

Example: Covering points with disk

Given: a set of points P and a set of disks \mathcal{D}, find a smallest set of disks covering the points.
range space:
$\left(P, \mathcal{D}_{\mid P}\right)$
where $\mathcal{D}_{\mid P}:=\{P \cap d \mid d \in \mathcal{D}\}$
minimum set cover:
smallest $D \subset \mathcal{D}_{\mid P}$ such that $\bigcup_{d \in D} d=P$

Question: What do you know about the set cover problem?

Greedy Approximation

Greedy Algorithm:

While \exists uncovered points, select range that contains the most uncovered points

Greedy Approximation

Greedy Algorithm:

While \exists uncovered points, select range that contains the most uncovered points

Quiz

What is the size of the greedy solution?
A 2
2
B 3
C 4

Greedy Approximation

Greedy Algorithm:

 While \exists uncovered points, select range that contains the most uncovered points
Quiz

What is the size of the greedy solution?

Greedy Approximation

Greedy Algorithm:

 While \exists uncovered points, select range that contains the most uncovered points
Quiz

What is the size of the greedy solution?

Greedy Approximation

Greedy Algorithm:

 While \exists uncovered points, select range that contains the most uncovered points
Quiz

What is the size of the greedy solution?

Greedy Approximation

Greedy Algorithm:

 While \exists uncovered points, select range that contains the most uncovered points
Quiz

What is the size of the greedy solution?

Greedy Approximation

Greedy Algorithm:

 While \exists uncovered points, select range that contains the most uncovered points
Quiz

What is the size of the greedy solution?

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution
proof sketch

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n / k$ points

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n / k$ points
\Rightarrow first range in greedy solution contains $\geq n / k$ points

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n / k$ points
\Rightarrow first range in greedy solution contains $\geq n / k$ points
$\Rightarrow \leq n\left(1-\frac{1}{k}\right)$ points remain uncovered

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n / k$ points
\Rightarrow first range in greedy solution contains $\geq n / k$ points
$\Rightarrow \leq n\left(1-\frac{1}{k}\right)$ points remain uncovered
iterate argument: after i steps greedy algorithm covers all but
$\leq n\left(1-\frac{1}{k}\right)^{i}$

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n / k$ points
\Rightarrow first range in greedy solution contains $\geq n / k$ points
$\Rightarrow \leq n\left(1-\frac{1}{k}\right)$ points remain uncovered
iterate argument: after i steps greedy algorithm covers all but $\leq n\left(1-\frac{1}{k}\right)^{i}$
all points covered when $n\left(1-\frac{1}{k}\right)^{i}<1$

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n / k$ points
\Rightarrow first range in greedy solution contains $\geq n / k$ points
$\Rightarrow \leq n\left(1-\frac{1}{k}\right)$ points remain uncovered
iterate argument: after i steps greedy algorithm covers all but $\leq n\left(1-\frac{1}{k}\right)^{i}$
all points covered when $n\left(1-\frac{1}{k}\right)^{i}<1$

note: $\left(1-\frac{1}{k}\right)^{k}<1 / e$

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n / k$ points
\Rightarrow first range in greedy solution contains $\geq n / k$ points
$\Rightarrow \leq n\left(1-\frac{1}{k}\right)$ points remain uncovered
iterate argument: after i steps greedy algorithm covers all but $\leq n\left(1-\frac{1}{k}\right)^{i}$
all points covered when $n\left(1-\frac{1}{k}\right)^{i}<1$

note: $\left(1-\frac{1}{k}\right)^{k}<1 / e$
\Rightarrow all points covered for $i=k \ln n=O(k \log n)$

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

Can we do better?

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

Can we do better?
no, for general set systems: no polynomial-time approximation algorithm with approximation factor better that $O(\log n)$ (if $P \neq N P$)

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

Can we do better?
no, for general set systems: no polynomial-time approximation algorithm with approximation factor better that $O(\log n)$ (if $P \neq N P$)
yes, for geometric range spaces

Greedy Approximation

size of greedy solution: $O(k \log n)$,
n : number of points, k : size of optimal solution

Can we do better?
no, for general set systems: no polynomial-time approximation algorithm with approximation factor better that $O(\log n)$ (if $P \neq N P$)
yes, for geometric range spaces
 today: algorithm with solution of size $O(k \log k)$

Dual range spaces
warm-up: covering points that are in many ranges

Dual range space

Given: a set of points P and a set of disks \mathcal{D}, find a smallest set of disks covering the points that are in at least $\varepsilon|\mathcal{D}|$ ranges.

Dual range space

Given: a set of points P and a set of disks \mathcal{D}, find a smallest set of disks covering the points that are in at least $\varepsilon|\mathcal{D}|$ ranges.

Dual range space of $(X, \mathcal{R}): \quad\left(\mathcal{R}, X^{*}\right)$, where $X^{*}=\left\{\mathcal{R}_{p} \mid p \in X\right\}, \mathcal{R}_{p}=\{r \in R \mid p \in r\}$

Dual range space

Given: a set of points P and a set of disks \mathcal{D},
find a smallest set of disks covering the points that are in at least $\varepsilon|\mathcal{D}|$ ranges.

Dual range space of $(X, \mathcal{R}): \quad\left(\mathcal{R}, X^{*}\right)$, where $X^{*}=\left\{\mathcal{R}_{p} \mid p \in X\right\}, \mathcal{R}_{p}=\{r \in R \mid p \in r\}$

Here: $\mathcal{R}=\mathcal{D}$, dual ranges: set of disks with a common point

Dual range space

Given: a set of points P and a set of disks \mathcal{D},
find a smallest set of disks covering the points that are in at least $\varepsilon|\mathcal{D}|$ ranges.

Dual range space of $(X, \mathcal{R}): \quad\left(\mathcal{R}, X^{*}\right)$, where $X^{*}=\left\{\mathcal{R}_{p} \mid p \in X\right\}, \mathcal{R}_{p}=\{r \in R \mid p \in r\}$

Here: $\mathcal{R}=\mathcal{D}$,
dual ranges: set of disks with a common point

Intuition:

each face in the arrangement of disks corresponds to a dual range, namely to set of disks that include this face

Dual range space

Given: a set of points P and a set of disks \mathcal{D},
find a smallest set of disks covering the points that are in at least $\varepsilon|\mathcal{D}|$ ranges.

Dual range space of $(X, \mathcal{R}): \quad\left(\mathcal{R}, X^{*}\right)$, where $X^{*}=\left\{\mathcal{R}_{p} \mid p \in X\right\}, \mathcal{R}_{p}=\{r \in R \mid p \in r\}$

Here: $\mathcal{R}=\mathcal{D}$,
dual ranges: set of disks with a common point

Intuition:

each face in the arrangement of disks corresponds to a dual range, namely to set of disks that include this face

Dual range space

Given: a set of points P and a set of disks \mathcal{D}, find a smallest set of disks covering the points that are in at least $\varepsilon|\mathcal{D}|$ ranges.

Dual range space of (X, \mathcal{R}) : $\quad\left(\mathcal{R}, X^{*}\right)$, where $X^{*}=\left\{\mathcal{R}_{p} \mid p \in X\right\}, \mathcal{R}_{p}=\{r \in R \mid p \in r\}$

Here: $\mathcal{R}=\mathcal{D}$,
dual ranges: set of disks with a common point

Intuition:

asks for ε-net in
dual range space

each face in the arrangement of disks corresponds to a dual range, namely to set of disks that include this face

Dual range space

Given: a set of points P and a set of disks \mathcal{D}, find a smallest set of disks covering the points that are in at least $\varepsilon|\mathcal{D}|$ ranges.

Dual range space of $(X, \mathcal{R}): \quad\left(\mathcal{R}, X^{*}\right)$, where $X^{*}=\left\{\mathcal{R}_{p} \mid p \in X\right\}, \mathcal{R}_{p}=\{r \in R \mid p \in r\}$

VC-dimension of dual range space: δ^{*}

ε-net theorem:

A random sample of the disks of size $O\left(\frac{\delta^{*}}{\varepsilon} \log \frac{1}{\varepsilon}\right)$ is an ε-net with probability $\geq 1 / 2$

Dual range space: matrix interpretation

incidence matrix of range space

$$
\begin{array}{ccccccc}
& p_{1}^{\prime} & p_{1} & p_{2} & p_{3} & p_{4} \\
D_{1} & 1 & 1 & 1 & 0 & 0 \\
D_{2} & 1 & 1 & 1 & 0 & 1 \\
D_{3} & 1 & 1 & 0 & 1 & 0
\end{array}
$$

Dual range space: matrix interpretation

incidence matrix of range space
$p_{1}^{\prime} p_{1} p_{2} p_{3} p_{4}$
$\begin{array}{llllll}D_{1} & 1 & 1 & 1 & 0 & 0\end{array}$
$\begin{array}{llll}p_{2} & 1 & 1 & 0\end{array}$
$\begin{array}{llllll}D_{2} & 1 & 1 & 1 & 0 & 1\end{array}$
$\begin{array}{llll}p_{3} & 0 & 0 & 1\end{array}$
$\begin{array}{llllll}D_{3} & 1 & 1 & 0 & 1 & 0\end{array}$
$p_{4} \quad 0 \quad 1 \quad 0$

Dual range space: VC-dimension

If a range space has $\mathrm{VC}-\operatorname{dim} \delta$, then the dual VC - $\operatorname{dim} \delta^{*}<2^{\delta+1}$
\ldots or in short: if δ is constant, so is δ^{*}.

Dual range space: VC-dimension

If a range space has $\mathrm{VC}-\operatorname{dim} \delta$, then the dual VC - $\operatorname{dim} \delta^{*}<2^{\delta+1}$

Why?

Suppose $\delta^{*} \geq 2^{\delta^{\prime}}$ and prove that $\delta \geq \delta^{\prime}$, e.g., below $\delta^{*}=4=2^{2}$

	p_{1}	p_{2}	\cdots											
r_{1}	0	0	0	0	0	0	0	0	1	1	1	1	1	1
r_{2}	0	0	0	0	1	1	1	1	0	0	0	0	1	1
r_{3}	0	0	1	1	0	0	1	1	0	0	1	1	0	0
r_{4}	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Dual range space: VC-dimension

If a range space has $\mathrm{VC}-\operatorname{dim} \delta$, then the dual VC - $\operatorname{dim} \delta^{*}<2^{\delta+1}$

Why?

Suppose $\delta^{*} \geq 2^{\delta^{\prime}}$ and prove that $\delta \geq \delta^{\prime}$, e.g., below $\delta^{*}=4=2^{2}$ There are δ^{*} rows (= ranges) for which all $2^{\delta^{*}}$ columns occur

	p_{1}	p_{2}	\cdots											
r_{1}	0	0	0	0	0	0	0	0	1	1	1	1	1	1
r_{2}	0	0	0	0	1	1	1	1	0	0	0	0	1	1
r_{3}	0	0	1	1	0	0	1	1	0	0	1	1	0	0
r_{4}	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Dual range space: VC-dimension

If a range space has $\mathrm{VC}-\operatorname{dim} \delta$, then the dual VC - $\operatorname{dim} \delta^{*}<2^{\delta+1}$

Why?

Suppose $\delta^{*} \geq 2^{\delta^{\prime}}$ and prove that $\delta \geq \delta^{\prime}$, e.g., below $\delta^{*}=4=2^{2}$
There are δ^{*} rows (= ranges) for which all $2^{\delta^{*}}$ columns occur
Take columns that together count from 0 to $\delta^{*}-1=2^{\delta^{\prime}}-1$ in binary

	p_{1}	p_{2}	\cdots											
r_{1}	0	0	0	0	0	0	0	0	1	1	1	1	1	1
r_{2}	0	0	0	0	1	1	1	1	0	0	0	0	1	1
r_{3}	0	0	1	1	0	0	1	1	0	0	1	1	0	0
r_{4}	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Dual range space: VC-dimension

If a range space has VC-dim δ, then the dual VC-dim $\delta^{*}<2^{\delta+1}$

Why?

Suppose $\delta^{*} \geq 2^{\delta^{\prime}}$ and prove that $\delta \geq \delta^{\prime}$, e.g., below $\delta^{*}=4=2^{2}$
There are δ^{*} rows (= ranges) for which all $2^{\delta^{*}}$ columns occur
Take columns that together count from 0 to $\delta^{*}-1=2^{\delta^{\prime}}-1$ in binary
These are $\delta^{\prime}=\log \delta^{*}$ shattered columns $\Rightarrow \delta \geq \delta^{\prime}$

								p_{1}	p_{2}	\cdots				
r_{1}	0	0	0	0	0	0	0	0	1	1	1	1	1	1
r_{2}	0	0	0	0	1	1	1	1	0	0	0	0	1	1
r_{3}	0	0	1	1	0	0	1	1	0	0	1	1	0	0
r_{4}	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Quiz

In the previous proof: Could we have picked two different columns?

A no
B yes, we could have picked the second column differently
C yes, we could have picked completely different columns

	p_{1}	p_{2}	\cdots											
r_{1}	0	0	0	0	0	0	0	0	1	1	1	1	1	1
r_{2}	0	0	0	0	1	1	1	1	0	0	0	0	1	1
r_{3}	0	0	1	1	0	0	1	1	0	0	1	1	0	0
r_{4}	0	1	0	1	0	1	0	1	0	1	0	1	0	1

In the previous proof: Could we have picked two different columns?

A no
B yes, we could have picked the second column differently
C yes, we could have picked completely different columns

| | p_{1} | p_{2} | \ldots | | | | | | | | \downarrow | e.g. | \downarrow | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| r_{1} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| r_{2} | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| r_{3} | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| r_{4} | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

Approximation Algorithm for Geometric Set Cover
sampling ranges with reweighing

The algorithm: preparation

Given $(X, \mathcal{R}), n=|X|, m=|\mathcal{R}|$, and dual VC-dimension δ^{*}, the algorithm computes a set cover which uses $\mathcal{O}\left(\delta^{*} k \cdot \log \left(\delta^{*} k\right)\right)$ sets where k is the number of sets used by the optimal solution.

The algorithm: preparation

Given $(X, \mathcal{R}), n=|X|, m=|\mathcal{R}|$, and dual VC-dimension δ^{*}, the algorithm computes a set cover which uses $\mathcal{O}\left(\delta^{*} k \cdot \log \left(\delta^{*} k\right)\right)$ sets where k is the number of sets used by the optimal solution.

Algorithm assumes k is known. We run it for $k=1,2,4,8, \ldots$ until it finds a solution
Pick $\varepsilon=\frac{1}{4 k}$
Assign each range r a weight $W(r)$. Initially, $W(r)=1$

$W(\mathcal{R})$ is the total weight of all the ranges in \mathcal{R}
\mathcal{R}^{\prime} is a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
Each range $r \in \mathcal{R}$ has probability $W(r) / W(\mathcal{R})$ of being selected

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

$$
\begin{aligned}
& W(r) \\
& 1 \text { red }=\{1,2,3,4,5,7,8\} \\
& 1 \text { green }=\{1,2,7,8\} \\
& 1 \text { orange }=\{1,2,3,4,7,8\} \\
& 1 \text { purple }=\{1,2,3,4,5,6\} \\
& 1 \text { blue }=\{2,3,5,6\} \\
& 1 \operatorname{pink}=\{1,2,3,4,5,6,7\}
\end{aligned}
$$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$

$$
\begin{array}{ll}
W(r) \\
1 & \text { red }=\{1,2,3,4,5,7,8\} \\
1 & \text { green }=\{1,2,7,8\} \\
1 & \text { orange }=\{1,2,3,4,7,8\} \\
1 & \text { purple }=\{1,2,3,4,5,6\} \\
1 & \text { bue }=\{2,3,5,6\} \\
1 & \text { pink }=\{1,2,3,4,5,6,7\}
\end{array}
$$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$

2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ red, green $\}$
$W(r)$
1 red $=\{1,2,3,4,5,7,8\}$
1 green $=\{1,2,7,8\}$
1 orange $=\{1,2,3,4,7,8\}$
1 purple $=\{1,2,3,4,5,6\}$
1 blue $=\{2,3,5,6\}$
$1 \operatorname{pink}=\{1,2,3,4,5,6,7\}$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ red, green $\}$
\mathcal{R}^{\prime} does not cover X, namely 6 is not covered

$$
W(r)
$$

$$
1 \text { red }=\{1,2,3,4,5,7,8\}
$$

$$
1 \text { green }=\{1,2,7,8\}
$$

$$
1 \text { orange }=\{1,2,3,4,7,8\}
$$

$$
1 \text { purple }=\{1,2,3,4,5,6\}
$$

$$
1 \text { blue }=\{2,3,5,6\}
$$

$$
1 \operatorname{pink}=\{1,2,3,4,5,6,7\}
$$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \boldsymbol{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ red, green $\}$
\mathcal{R}^{\prime} does not cover X, namely 6 is not covered
$\mathcal{R}_{6}=\{$ purple, blue,pink $\}$

$$
\begin{aligned}
& W(r) \\
& 1 \text { red }=\{1,2,3,4,5,7,8\} \\
& 1 \text { green }=\{1,2,7,8\} \\
& 1 \text { orange }=\{1,2,3,4,7,8\} \\
& 1 \text { purple }=\{1,2,3,4,5,6\} \\
& 1 \text { blue }=\{2,3,5,6\} \\
& 1 \operatorname{pink}=\{1,2,3,4,5,6,7\}
\end{aligned}
$$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ red, green $\}$
\mathcal{R}^{\prime} does not cover X, namely 6 is not covered
$\mathcal{R}_{6}=\{$ purple, blue, pink $\}$
$W\left(\mathcal{R}_{6}\right)=3<4=(2 / 3) \cdot 6=\varepsilon W(\mathcal{R})$

$$
W(r)
$$

$$
1 \text { red }=\{1,2,3,4,5,7,8\}
$$

$$
1 \text { green }=\{1,2,7,8\}
$$

$$
1 \text { orange }=\{1,2,3,4,7,8\}
$$

$$
\text { purple }=\{1,2,3,4,5,6\}
$$

$$
1 \text { blue }=\{2,3,5,6\}
$$

$$
1 \operatorname{pink}=\{1,2,3,4,5,6,7\}
$$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
$W(r)$

sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ red, green $\}$
\mathcal{R}^{\prime} does not cover X, namely 6 is not covered
$\mathcal{R}_{6}=\{$ purple, blue, pink $\}$

1 red $=\{1,2,3,4,5,7,8\}$
1 green $=\{1,2,7,8\}$
1 orange $=\{1,2,3,4,7,8\}$
1 purple $=\{1,2,3,4,5,6\}$
1 blue $=\{2,3,5,6\}$
$1 \operatorname{pink}=\{1,2,3,4,5,6,7\}$
$W\left(\mathcal{R}_{6}\right)=3<4=(2 / 3) \cdot 6=\varepsilon W(\mathcal{R})-$ double

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
$W(r)$

1 red $=\{1,2,3,4,5,7,8\}$
1 green $=\{1,2,7,8\}$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ red, green $\}$
\mathcal{R}^{\prime} does not cover X, namely 6 is not covered
$\mathcal{R}_{6}=\{$ purple, blue, pink $\}$

1 orange $=\{1,2,3,4,7,8\}$
2 purple $=\{1,2,3,4,5,6\}$
2 blue $=\{2,3,5,6\}$
$2 \operatorname{pink}=\{1,2,3,4,5,6,7\}$
$W\left(\mathcal{R}_{6}\right)=3<4=(2 / 3) \cdot 6=\varepsilon W(\mathcal{R})-$ double

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$

$$
\begin{aligned}
& W(r) \\
& 1 \text { red }=\{1,2,3,4,5,7,8\} \\
& 1 \text { green }=\{1,2,7,8\} \\
& 1 \text { orange }=\{1,2,3,4,7,8\} \\
& 2 \text { purple }=\{1,2,3,4,5,6\} \\
& 2 \text { buee }=\{2,3,5,6\} \\
& 2 \text { pink }=\{1,2,3,4,5,6,7\}
\end{aligned}
$$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ purple, blue $\}$

$$
\begin{aligned}
& W(r) \\
& 1 \quad \text { red }=\{1,2,3,4,5,7,8\} \\
& 1 \\
& 1 \text { green }=\{1,2,7,8\} \\
& 2 \text { orange }=\{1,2,3,4,7,8\} \\
& 2 \text { purple }=\{1,2,3,4,5,6\} \\
& 2 \text { blue }=\{2,3,5,6\} \\
& 2
\end{aligned} \text { pink }=\{1,2,3,4,5,6,7\}
$$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ purple, blue $\}$
\mathcal{R}^{\prime} does not cover X, namely 7 is not covered

$$
W(r)
$$

$$
1 \quad \text { red }=\{1,2,3,4,5,7,8\}
$$

$$
1 \text { green }=\{1,2,7,8\}
$$

$$
1 \text { orange }=\{1,2,3,4,7,8\}
$$

$$
2 \text { purple }=\{1,2,3,4,5,6\}
$$

$$
2 \text { blue }=\{2,3,5,6\}
$$

$$
2 \operatorname{pink}=\{1,2,3,4,5,6,7\}
$$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \boldsymbol{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ purple, blue $\}$
\mathcal{R}^{\prime} does not cover X, namely 7 is not covered
$\mathcal{R}_{7}=\{$ red, green, orange, pink $\}$

$$
W(r)
$$

$$
1 \text { red }=\{1,2,3,4,5,7,8\}
$$

$$
1 \text { green }=\{1,2,7,8\}
$$

$$
1 \text { orange }=\{1,2,3,4,7,8\}
$$

$$
2 \text { purple }=\{1,2,3,4,5,6\}
$$

$$
2 \text { blue }=\{2,3,5,6\}
$$

$$
2 \operatorname{pink}=\{1,2,3,4,5,6,7\}
$$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \boldsymbol{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ purple, blue $\}$
\mathcal{R}^{\prime} does not cover X, namely 7 is not covered
$\mathcal{R}_{7}=\{$ red, green, orange, pink $\}$
$W\left(\mathcal{R}_{7}\right)=5<6=(2 / 3) \cdot 9=\varepsilon W(\mathcal{R})$

$$
W(r)
$$

1 red $=\{1,2,3,4,5,7,8\}$
1 green $=\{1,2,7,8\}$
1 orange $=\{1,2,3,4,7,8\}$
2 purple $=\{1,2,3,4,5,6\}$ blue $=\{2,3,5,6\}$
$2 \operatorname{pink}=\{1,2,3,4,5,6,7\}$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ purple, blue $\}$
\mathcal{R}^{\prime} does not cover X, namely 7 is not covered
$\mathcal{R}_{7}=\{$ red, green, orange, pink $\}$

$$
W(r)
$$

1 red $=\{1,2,3,4,5,7,8\}$
1 green $=\{1,2,7,8\}$
1 orange $=\{1,2,3,4,7,8\}$
2 purple $=\{1,2,3,4,5,6\}$
2 blue $=\{2,3,5,6\}$
$2 \operatorname{pink}=\{1,2,3,4,5,6,7\}$
$W\left(\mathcal{R}_{7}\right)=5<6=(2 / 3) \cdot 9=\varepsilon W(\mathcal{R}) \quad$ double

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
$W(r)$

2 red $=\{1,2,3,4,5,7,8\}$
2 green $=\{1,2,7,8\}$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ purple, blue $\}$
\mathcal{R}^{\prime} does not cover X, namely 7 is not covered
$\mathcal{R}_{7}=\{$ red, green, orange, pink $\}$
$W\left(\mathcal{R}_{7}\right)=5<6=(2 / 3) \cdot 9=\varepsilon W(\mathcal{R})-$ double

2 orange $=\{1,2,3,4,7,8\}$
2 purple $=\{1,2,3,4,5,6\}$
2 blue $=\{2,3,5,6\}$
$4 \operatorname{pink}=\{1,2,3,4,5,6,7\}$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{$ red, pink $\}$

$$
2 \text { green }=\{1,2,7,8\}
$$

$$
2 \text { orange }=\{1,2,3,4,7,8\}
$$

$$
2 \text { purple }=\{1,2,3,4,5,6\}
$$

$$
2 \text { blue }=\{2,3,5,6\}
$$

$$
4 \operatorname{pink}=\{1,2,3,4,5,6,7\}
$$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}

6. return \mathcal{R}^{\prime}

Let $\varepsilon=2 / 3$ and $\left|\mathcal{R}^{\prime}\right|=2$
sample \mathcal{R}^{\prime}, e.g., $\mathcal{R}^{\prime}=\{r e d$, pink $\}$
\mathcal{R}^{\prime} covers X, We are done

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}
intuition:
7. With probability $1 / 2: \mathcal{R}^{\prime}$ is ε-net

2 orange $=\{1,2,3,4,7,8\}$
2 purple $=\{1,2,3,4,5,6\}$
2 blue $=\{2,3,5,6\}$
$4 \operatorname{pink}=\{1,2,3,4,5,6,7\}$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}
7. With probability $1 / 2$: \mathcal{R}^{\prime} is ε-net
\rightarrow doubling happens often, but to very few ranges

2 orange $=\{1,2,3,4,7,8\}$
2 purple $=\{1,2,3,4,5,6\}$
2 blue $=\{2,3,5,6\}$
$4 \operatorname{pink}=\{1,2,3,4,5,6,7\}$

The algorithm

1. sample \mathcal{R}^{\prime} a random subset of size $\mathcal{O}\left(\left(\delta^{*} / \varepsilon\right) \log \left(\delta^{*} / \varepsilon\right)\right)$
2. While \mathcal{R}^{\prime} does not cover all points in U
3. let $p \in U$ be the point not covered by \mathcal{R}^{\prime}
4. if $\left(W\left(\mathcal{R}_{p}\right)<\varepsilon W(\mathcal{R})\right)$: double all weight of \mathcal{R}_{p}
5. sample new \mathcal{R}^{\prime}
6. return \mathcal{R}^{\prime}
7. With probability $1 / 2$: \mathcal{R}^{\prime} is ε-net
\rightarrow doubling happens often, but to very few ranges
8. $W(\mathcal{R})$ grows slowly, $W\left(\mathcal{R}_{p}\right)$ for uncovered p

2 orange $=\{1,2,3,4,7,8\}$
2 purple $=\{1,2,3,4,5,6\}$
2 blue $=\{2,3,5,6\}$
$4 \operatorname{pink}=\{1,2,3,4,5,6,7\}$
exponentially \rightarrow eventually p covered

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$
give lower bound on weight of optimal set
compare weight of optimal and $W(\mathcal{R})$ to derive bound on $i \leq 2 k \log (m / k)$ conclude that the algorithm terminates successfully

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$
$m=|\mathcal{R}|$
$W_{0}=m$ and $W_{i}=$ the weight after $i^{t h}$ doubling

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$
$m=|\mathcal{R}|$
$W_{0}=m$ and $W_{i}=$ the weight after $i^{t h}$ doubling
weight of R_{p} doubled if $W\left(R_{p}\right)<\varepsilon W(R)$

$$
W_{i} \leq(1+\varepsilon) W_{i-1}=(1+\varepsilon)^{i} \cdot m \leq m \cdot e^{\varepsilon i}
$$

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$

$$
\leq m \cdot e^{\varepsilon i}
$$

give lower bound on weight of optimal set
compare weight of optimal and $W(\mathcal{R})$ to derive bound on $i \leq 2 k \log (m / k)$

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$

$$
\leq m \cdot e^{\varepsilon i}
$$

give lower bound on weight of optimal set
$t_{i}(j)$ is the times the weight of $j^{t h}$ range in the optimal solution was doubled the weight of the optimal set at the $i^{t h}$ iteration is $\sum_{j=1}^{k} 2^{t_{i}(j)}$

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$

$$
\leq m \cdot e^{\varepsilon i}
$$

give lower bound on weight of optimal set
$t_{i}(j)$ is the times the weight of $j^{t h}$ range in the optimal solution was doubled the weight of the optimal set at the $i^{t h}$ iteration is $\sum_{j=1}^{k} 2^{t_{i}(j)}$

$$
2^{a}+2^{b} \geq 2 \cdot 2^{\lfloor(a+b) / 2\rfloor}
$$

To minimize the weight of the optimal set $t_{i}(1)=t_{i}(2)=\cdots=t_{i}(k)$

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$

$$
\leq m \cdot e^{\varepsilon i}
$$

give lower bound on weight of optimal set

$t_{i}(j)$ is the times the weight of $j^{t h}$ range in the optimal solution was doubled the weight of the optimal set at the $i^{t h}$ iteration is $\sum_{j=1}^{k} 2^{t_{i}(j)}$
$2^{a}+2^{b} \geq 2 \cdot 2^{\lfloor(a+b) / 2\rfloor}$
To minimize the weight of the optimal set $t_{i}(1)=t_{i}(2)=\cdots=t_{i}(k)$
minimal weight of the optimal set $\geq k 2^{\lfloor i / k\rfloor}$

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$
give lower bound on weight of optimal set
$\leq m \cdot e^{\varepsilon i}$
$\geq k 2^{\lfloor i / k\rfloor}$

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$

$$
\begin{aligned}
& \leq m \cdot e^{\varepsilon i} \\
& \geq k 2^{\lfloor i / k\rfloor}
\end{aligned}
$$

give lower bound on weight of optimal set
compare weight of optimal and $W(\mathcal{R})$ to derive upper bound on i optimal set $\subset \mathcal{R}$

$$
\Rightarrow k 2^{\lfloor i / k\rfloor} \leq m \cdot e^{\varepsilon i}=m \cdot e^{(i / k) / 4}, \text { since } \varepsilon=\frac{1}{4 k}
$$

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$

$$
\begin{aligned}
& \leq m \cdot e^{\varepsilon i} \\
& \geq k 2^{\lfloor i / k\rfloor}
\end{aligned}
$$

give lower bound on weight of optimal set
compare weight of optimal and $W(\mathcal{R})$ to derive upper bound on i optimal set $\subset \mathcal{R}$

$$
\begin{aligned}
& \Rightarrow k 2^{\lfloor i / k\rfloor} \leq m \cdot e^{\varepsilon i}=m \cdot e^{(i / k) / 4}, \text { since } \varepsilon=\frac{1}{4 k} \\
& \Rightarrow\left(\frac{2}{e^{1 / 4}}\right)^{i / k} \leq m / k
\end{aligned}
$$

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$

$$
\begin{aligned}
& \leq m \cdot e^{\varepsilon i} \\
& \geq k 2^{\lfloor i / k\rfloor}
\end{aligned}
$$

give lower bound on weight of optimal set
compare weight of optimal and $W(\mathcal{R})$ to derive upper bound on i optimal set $\subset \mathcal{R}$

$$
\begin{aligned}
& \Rightarrow k 2^{\lfloor i / k\rfloor} \leq m \cdot e^{\varepsilon i}=m \cdot e^{(i / k) / 4}, \text { since } \varepsilon=\frac{1}{4 k} \\
& \Rightarrow\left(\frac{2}{e^{1 / 4}}\right)^{i / k} \leq m / k \\
& \Rightarrow i / k \leq \log (m / k) / \log \left(\frac{2}{e^{1 / 4}}\right) \leq 2 \log (m / k)
\end{aligned}
$$

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$

$$
\begin{aligned}
& \leq m \cdot e^{\varepsilon i} \\
& \geq k 2^{\lfloor i / k\rfloor}
\end{aligned}
$$

give lower bound on weight of optimal set
compare weight of optimal and $W(\mathcal{R})$ to derive upper bound on i optimal set $\subset \mathcal{R}$

$$
\begin{aligned}
& \Rightarrow k 2^{\lfloor i / k\rfloor} \leq m \cdot e^{\varepsilon i}=m \cdot e^{(i / k) / 4}, \text { since } \varepsilon=\frac{1}{4 k} \\
& \Rightarrow\left(\frac{2}{e^{1 / 4}}\right)^{i / k} \leq m / k \\
& \Rightarrow i / k \leq \log (m / k) / \log \left(\frac{2}{e^{1 / 4}}\right) \leq 2 \log (m / k) \\
& \Rightarrow i \leq 2 k \log (m / k)
\end{aligned}
$$

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$

$$
\leq m \cdot e^{\varepsilon i}
$$

give lower bound on weight of optimal set
$\geq k 2^{\lfloor i / k\rfloor}$
compare weight of optimal and $W(\mathcal{R})$ to derive bound on $i \leq 2 k \log (m / k)$
conclude that the algorithm terminates successfully
\mathcal{R}^{\prime} is ε-net with probability $\geq 1 / 2$:
expected \# iterations $\leq 4 k \log (m / k)$

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$

$$
\leq m \cdot e^{\varepsilon i}
$$

give lower bound on weight of optimal set
$\geq k 2^{\lfloor i / k\rfloor}$
compare weight of optimal and $W(\mathcal{R})$ to derive bound on $i \leq 2 k \log (m / k)$
conclude that the algorithm terminates successfully
\mathcal{R}^{\prime} is ε-net with probability $\geq 1 / 2$:
expected \# iterations $\leq 4 k \log (m / k)$
\# iterations $\leq 8 k \log (m / k)$ with high prob. (Chernoff)

Ingredients of argument

after doubling i times:
give upper bound on $W(\mathcal{R})$

$$
\begin{aligned}
& \leq m \cdot e^{\varepsilon i} \\
& \geq k 2^{\lfloor i / k\rfloor}
\end{aligned}
$$

give lower bound on weight of optimal set
compare weight of optimal and $W(\mathcal{R})$ to derive bound on $i \leq 2 k \log (m / k)$
conclude that the algorithm terminates successfully
\mathcal{R}^{\prime} is ε-net with probability $\geq 1 / 2$:
expected \# iterations $\leq 4 k \log (m / k)$
\# iterations $\leq 8 k \log (m / k)$ with high prob. (Chernoff)
If we need more iterations, we can assume k was guessed too small, and we double k

Quiz

How many values do we test for k ?
A $\quad \log n=\log |X|$
B $\log m=\log |\mathcal{R}|$
C $\min (\log m, \log n)$

Quiz

How many values do we test for k ?

A $\log n=\log \|X\|$
B $\log m=\log \|\mathcal{R}\|$
C $\min (\log m, \log n)$

Summary for Algorithm

Given (X, R) with $n=|U|, m=|\mathcal{R}|$, and dual shattering dimension δ^{*}, we can compute a set cover which uses $\mathcal{O}\left(\delta^{*} k \cdot \log \left(\delta^{*} k\right)\right)$ sets where k is the number of sets used by the optimal solution. The run time is $O\left(\left(m+n \delta^{*} k \cdot \log \left(\delta^{*} k\right)\right) \cdot \log (m / k) \cdot \log (n)\right)$ with high probability assuming we can decide if a point is inside a range in constant time.

Application to the art gallery problem

covering simple polygons with guards

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad$ a guard at p sees all of $\mathcal{V}_{P}(p)$ Free placement of point p

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad$ a guard at p sees all of $\mathcal{V}_{P}(p)$ Free placement of point p

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad$ a guard at p sees all of $\mathcal{V}_{P}(p)$ Free placement of point p

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad$ a guard at p sees all of $\mathcal{V}_{P}(p)$ Free placement of point p

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad$ a guard at p sees all of $\mathcal{V}_{P}(p)$ Free placement of point p

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad$ a guard at p sees all of $\mathcal{V}_{P}(p)$ Free placement of point p

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad$ a guard at p sees all of $\mathcal{V}_{P}(p)$ Free placement of point p

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\}$
 a guard at p sees all of $\mathcal{V}_{P}(p)$

Infinity many points in P
Restrict possible placement of p to a finite subset

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\}$
 a guard at p sees all of $\mathcal{V}_{P}(p)$

Infinity many points in P
Restrict possible placement of p to a finite subset
Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

$$
\text { Point } p \text { covers } \mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad \text { a guard at } p \text { sees all of } \mathcal{V}_{P}(p)
$$

Infinity many points in P
Restrict possible placement of p to a finite subset Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\}$
 a guard at p sees all of $\mathcal{V}_{P}(p)$

Infinity many points in P
Restrict possible placement of p to a finite subset
Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\}$
 a guard at p sees all of $\mathcal{V}_{P}(p)$

Infinity many points in P
Restrict possible placement of p to a finite subset Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\}$
 a guard at p sees all of $\mathcal{V}_{P}(p)$

Infinity many points in P
Restrict possible placement of p to a finite subset
Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\}$
 a guard at p sees all of $\mathcal{V}_{P}(p)$

Infinity many points in P
Restrict possible placement of p to a finite subset Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad$ a guard at p sees all of $\mathcal{V}_{P}(p)$
Infinity many points in P
Restrict possible placement of p to a finite subset Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad$ a guard at p sees all of $\mathcal{V}_{P}(p)$ Infinity many points in P
Restrict possible placement of p to a finite subset
Restrict placement of p to vertices of P
Question: Which sets cover the polygon?

$$
\begin{aligned}
G_{1} & =\{b l u e\} \\
G_{2} & =\{b l u e, \text { red }\} \\
G_{3} & =\{b l u e, \text { green }\} \\
G_{4} & =\{\text { blue }, \text { green }, \text { red }\}
\end{aligned}
$$

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad$ a guard at p sees all of $\mathcal{V}_{P}(p)$ Infinity many points in P
Restrict possible placement of p to a finite subset
Restrict placement of p to vertices of P
Question: Which sets cover the polygon?

$$
\begin{aligned}
& G_{1}=\{\text { blue }\} \\
& G_{2}=\{\text { blue }, \text { red }\} \\
& G_{3}=\{\text { blue }, \text { green }\} \\
& G_{4}=\{\text { blue, green, red }\}
\end{aligned}
$$

The art gallery problem: covering a polygon

Point p covers $\mathcal{V}_{P}(p)=\{q \mid q \in P, p q \subseteq P\} \quad$ a guard at p sees all of $\mathcal{V}_{P}(p)$ Infinity many points in P
Restrict possible placement of p to a finite subset
Restrict placement of p to vertices of P
Question: Which sets cover the polygon?

$$
\begin{aligned}
G_{1} & =\{b l u e\} \\
G_{2} & =\{\text { blue }, \text { red }\} \\
G_{3} & =\{\text { blue }, \text { green }\} \\
G_{4} & =\{\text { blue }, \text { green }, \text { red }\}
\end{aligned}
$$

goal: cover with as few
$\mathcal{V}_{P}(p)$ as possible

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity $X=\{1,2,3,4,5,6,7,8\}$

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity $X=\{1,2,3,4,5,6,7,8\}$
5. For visibility polygons create group of visible points

$$
\text { red }=\{1,2,3,4,5,7,8\}
$$

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity $X=\{1,2,3,4,5,6,7,8\}$
5. For visibility polygons create group of visible points

$$
\begin{aligned}
& \text { red }=\{1,2,3,4,5,7,8\} \\
& \text { green }=\{?\} \\
& S_{1}=\{2,7,8\} \\
& S_{2}=\{1,2,7,8\} \\
& S_{3}=\{1,2,3,4,7,8\} \\
& S_{4}=\{7,8\}
\end{aligned}
$$

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity $X=\{1,2,3,4,5,6,7,8\}$
5. For visibility polygons create group of visible points

$$
\begin{aligned}
& \text { red }=\{1,2,3,4,5,7,8\} \\
& \text { green }=\{1,2,7,8\} \\
& S_{1}=\{2,7,8\} \\
& \hline S_{2}=\{1,2,7,8\} \\
& S_{3}=\{1,2,3,4,7,8\} \\
& S_{4}=\{7,8\}
\end{aligned}
$$

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity $X=\{1,2,3,4,5,6,7,8\}$
5. For visibility polygons create group of visible points

$$
\begin{aligned}
& \text { red }=\{1,2,3,4,5,7,8\} \\
& \text { green }=\{1,2,7,8\} \\
& \text { orange }=\{1,2,3,4,7,8\} \\
& \text { purple }=\{1,2,3,4,5,6\} \\
& \text { blue }=\{2,3,5,6\} \\
& \text { pink }=\{1,2,3,4,5,6,7\}
\end{aligned}
$$

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity $X=\{1,2,3,4,5,6,7,8\}$
5. For visibility polygons create group of visible points

$$
\begin{aligned}
& \text { red }=\{1,2,3,4,5,7,8\} \\
& \text { green }=\{1,2,7,8\} \\
& \text { orange }=\{1,2,3,4,7,8\} \\
& \text { purple }=\{1,2,3,4,5,6\} \\
& \text { blue }=\{2,3,5,6\} \\
& \text { pink }=\{1,2,3,4,5,6,7\}
\end{aligned}
$$

$$
\mathcal{R}=\{\text { red, green, orange },
$$

$$
\text { purple, blue, pink\} }
$$

Compute range space

art gallery problem: set cover problem on (X, \mathcal{R})

$$
\begin{gathered}
X=\{1,2,3,4,5,6,7,8\} \\
\text { red }=\{1,2,3,4,5,7,8\} \\
\text { green }=\{1,2,7,8\} \\
\text { orange }=\{1,2,3,4,7,8\} \\
\text { purple }=\{1,2,3,4,5,6\} \\
\text { blue }=\{2,3,5,6\} \\
\text { pink }=\{1,2,3,4,5,6,7\}
\end{gathered}
$$

Compute range space

art gallery problem: set cover problem on (X, \mathcal{R})

$$
\begin{gathered}
X=\{1,2,3,4,5,6,7,8\} \\
\text { red }=\{1,2,3,4,5,7,8\} \\
\text { green }=\{1,2,7,8\} \\
\text { orange }=\{1,2,3,4,7,8\} \\
\text { purple }=\{1,2,3,4,5,6\} \\
\text { blue }=\{2,3,5,6\} \\
\text { pink }=\{1,2,3,4,5,6,7\}
\end{gathered}
$$

Compute range space

art gallery problem: set cover problem on (X, \mathcal{R})
dual VC-dimension is constant (see exercises)

$$
X=\{1,2,3,4,5,6,7,8\}
$$

$$
\begin{aligned}
& \text { red }=\{1,2,3,4,5,7,8\} \\
& \text { green }=\{1,2,7,8\} \\
& \text { orange }=\{1,2,3,4,7,8\} \\
& \text { purple }=\{1,2,3,4,5,6\} \\
& \text { blue }=\{2,3,5,6\} \\
& \text { pink }=\{1,2,3,4,5,6,7\}
\end{aligned}
$$

$$
\mathcal{R}=\{\text { red, green, orange },
$$

$$
\text { purple, blue,pink\} }
$$

Compute range space

art gallery problem: set cover problem on (X, \mathcal{R})
dual VC-dimension is constant (see exercises)
Previous algorithm applies

$$
X=\{1,2,3,4,5,6,7,8\}
$$

$$
\begin{aligned}
& \text { red }=\{1,2,3,4,5,7,8\} \\
& \text { green }=\{1,2,7,8\} \\
& \text { orange }=\{1,2,3,4,7,8\} \\
& \text { purple }=\{1,2,3,4,5,6\} \\
& \text { blue }=\{2,3,5,6\} \\
& \text { pink }=\{1,2,3,4,5,6,7\}
\end{aligned}
$$

$$
\mathcal{R}=\{\text { red, green, orange },
$$

$$
\text { purple, blue,pink\} }
$$

Summary

general set cover problem: $O(\log n)$-approximation using greedy algorithm
geometric set cover problem: $O(\log k)$-approximation using sampling with reweighting (for finite VC-dimension)
applications: covering with disks and art gallery problem

