Geometric Set Cover

sampling with reweighting

Given: a set of points P and a set of disks D, find a smallest set of disks covering the points.

Given: a set of points P and a set of disks D, find a smallest set of disks covering the points.

Given: a set of points P and a set of disks D, find a smallest set of disks covering the points.

range space:

Given: a set of points P and a set of disks D, find a smallest set of disks covering the points.

range space:

 $(P, \mathcal{D}_{|P})$

Given: a set of points P and a set of disks D, find a smallest set of disks covering the points.

range space:

 $(P, \mathcal{D}_{|P})$

where $\mathcal{D}_{|P} := \{P \cap d \mid d \in \mathcal{D}\}$

Given: a set of points P and a set of disks D, find a smallest set of disks covering the points.

range space:

 $(P, \mathcal{D}_{|P})$

where $\mathcal{D}_{|P} := \{P \cap d \mid d \in \mathcal{D}\}$

minimum set cover: smallest $D \subset \mathcal{D}_{|P}$ such that $\bigcup_{d \in D} d = P$

Given: a set of points P and a set of disks D, find a smallest set of disks covering the points.

range space:

- $(P, \mathcal{D}_{|P})$
- where $\mathcal{D}_{|P} := \{P \cap d \mid d \in \mathcal{D}\}$

minimum set cover: smallest $D \subset \mathcal{D}_{|P}$ such that $\bigcup_{d \in D} d = P$

Question: What do you know about the set cover problem?

Greedy Algorithm:

While \exists uncovered points, select range that contains the most uncovered points

Greedy Algorithm:

While \exists uncovered points, select range that contains the most uncovered points

Quiz

Greedy Algorithm:

While \exists uncovered points, select range that contains the most uncovered points

Quiz

Greedy Algorithm:

While \exists uncovered points, select range that contains the most uncovered points

Quiz

Greedy Algorithm:

While \exists uncovered points, select range that contains the most uncovered points

Quiz

Greedy Algorithm:

While \exists uncovered points, select range that contains the most uncovered points

Quiz

Greedy Algorithm:

While \exists uncovered points, select range that contains the most uncovered points

Quiz

size of greedy solution: $O(k \log n)$, *n*: number of points, *k*: size of optimal solution

size of greedy solution: $O(k \log n)$,

n: number of points, k: size of optimal solution

proof sketch

size of greedy solution: $O(k \log n)$,

n: number of points, k: size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n/k$ points

size of greedy solution: $O(k \log n)$,

n: number of points, k: size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n/k$ points

 \Rightarrow first range in greedy solution contains $\geq n/k$ points

size of greedy solution: $O(k \log n)$,

n: number of points, k: size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n/k$ points

- \Rightarrow first range in greedy solution contains $\geq n/k$ points
- $\Rightarrow \le n(1 \frac{1}{k})$ points remain uncovered

size of greedy solution: $O(k \log n)$,

n: number of points, k: size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n/k$ points

- \Rightarrow first range in greedy solution contains $\geq n/k$ points
- $\Rightarrow \leq n(1 \frac{1}{k})$ points remain uncovered

iterate argument: after i steps greedy algorithm covers all but $\leq n(1-\frac{1}{k})^i$

size of greedy solution: $O(k \log n)$,

n: number of points, k: size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n/k$ points

 \Rightarrow first range in greedy solution contains $\geq n/k$ points

 $\Rightarrow \leq n(1 - \frac{1}{k})$ points remain uncovered

iterate argument: after i steps greedy algorithm covers all but $\leq n(1-\frac{1}{k})^i$

all points covered when $n(1-\frac{1}{k})^i < 1$

size of greedy solution: $O(k \log n)$,

n: number of points, k: size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n/k$ points \Rightarrow first range in greedy solution contains $\geq n/k$ points $\Rightarrow \leq n(1 - \frac{1}{k})$ points remain uncovered iterate argument: after *i* steps greedy algorithm covers all but $\leq n(1 - \frac{1}{k})^i$

all points covered when $n(1-\frac{1}{k})^i < 1$ note: $\left(1-\frac{1}{k}\right)^k < 1/e$

size of greedy solution: $O(k \log n)$,

n: number of points, k: size of optimal solution

proof sketch

pigeonhole principle: \exists range in optimal solution with $\geq n/k$ points \Rightarrow first range in greedy solution contains $\geq n/k$ points $\Rightarrow \leq n(1 - \frac{1}{k})$ points remain uncovered iterate argument: after *i* steps greedy algorithm covers all but $\leq n(1 - \frac{1}{k})^i$

all points covered when $n(1-\frac{1}{k})^i < 1$ note: $(1-\frac{1}{k})^k < 1/e$

 \Rightarrow all points covered for $i=k\ln n=O(k\log n)$

size of greedy solution: $O(k \log n)$, *n*: number of points, *k*: size of optimal solution

Can we do better?

size of greedy solution: $O(k \log n)$, *n*: number of points, *k*: size of optimal solution

Can we do better?

no, for general set systems: no polynomial-time approximation algorithm with approximation factor better that $O(\log n)$ (if $P \neq NP$)

size of greedy solution: $O(k \log n)$, *n*: number of points, *k*: size of optimal solution

Can we do better?

no, for general set systems: no polynomial-time approximation algorithm with approximation factor better that $O(\log n)$ (if $P \neq NP$)

yes, for geometric range spaces

size of greedy solution: $O(k \log n)$, *n*: number of points, *k*: size of optimal solution

Can we do better?

no, for general set systems: no polynomial-time approximation algorithm with approximation factor better that $O(\log n)$ (if $P \neq NP$)

yes, for geometric range spaces today: algorithm with solution of size $O(k \log k)$

warm-up: covering points that are in many ranges

Given: a set of points P and a set of disks \mathcal{D} , find a smallest set of disks covering the points that are in at least $\varepsilon |\mathcal{D}|$ ranges.

Given: a set of points P and a set of disks \mathcal{D} , find a smallest set of disks covering the points that are in at least $\varepsilon |\mathcal{D}|$ ranges.

Dual range space of (X, \mathcal{R}) : (\mathcal{R}, X^*) , where $X^* = \{\mathcal{R}_p \mid p \in X\}, \mathcal{R}_p = \{r \in R \mid p \in r\}$

Given: a set of points P and a set of disks \mathcal{D} , find a smallest set of disks covering the points that are in at least $\varepsilon |\mathcal{D}|$ ranges.

Dual range space of (X, \mathcal{R}) : (\mathcal{R}, X^*) , where $X^* = \{\mathcal{R}_p \mid p \in X\}, \mathcal{R}_p = \{r \in R \mid p \in r\}$

Here: $\mathcal{R} = \mathcal{D}$,

dual ranges: set of disks with a common point

Given: a set of points P and a set of disks \mathcal{D} , find a smallest set of disks covering the points that are in at least $\varepsilon |\mathcal{D}|$ ranges.

Dual range space of (X, \mathcal{R}) : (\mathcal{R}, X^*) , where $X^* = \{\mathcal{R}_p \mid p \in X\}, \mathcal{R}_p = \{r \in R \mid p \in r\}$

Here: $\mathcal{R} = \mathcal{D}$,

dual ranges: set of disks with a common point

Intuition:

each face in the arrangement of disks corresponds to a dual range, namely to set of disks that include this face

Given: a set of points P and a set of disks \mathcal{D} , find a smallest set of disks covering the points that are in at least $\varepsilon |\mathcal{D}|$ ranges.

Dual range space of (X, \mathcal{R}) : (\mathcal{R}, X^*) , where $X^* = \{\mathcal{R}_p \mid p \in X\}, \mathcal{R}_p = \{r \in R \mid p \in r\}$

Here: $\mathcal{R} = \mathcal{D}$,

dual ranges: set of disks with a common point

Intuition:

each face in the arrangement of disks corresponds to a dual range, namely to set of disks that include this face

Given: a set of points P and a set of disks \mathcal{D} , find a smallest set of disks covering the points that are in at least $\varepsilon |\mathcal{D}|$ ranges.

Dual range space of (X, \mathcal{R}) : (\mathcal{R}, X^*) , where $X^* = \{\mathcal{R}_p \mid p \in X\}, \mathcal{R}_p = \{r \in R \mid p \in r\}$

Here: $\mathcal{R} = \mathcal{D}$,

dual ranges: set of disks with a common point

Intuition:

each face in the arrangement of disks corresponds to a dual range, namely to set of disks that include this face

asks for ε -net in dual range space

Given: a set of points P and a set of disks \mathcal{D} , find a smallest set of disks covering the points that are in at least $\varepsilon |\mathcal{D}|$ ranges.

Dual range space of (X, \mathcal{R}) : (\mathcal{R}, X^*) , where $X^* = \{\mathcal{R}_p \mid p \in X\}, \mathcal{R}_p = \{r \in R \mid p \in r\}$

VC-dimension of dual range space: δ^*

ε -net theorem:

A random sample of the disks of size $O\left(\frac{\delta^*}{\varepsilon}\log\frac{1}{\varepsilon}\right)$ is an ε -net with probability $\geq 1/2$

asks for ε -net in dual range space

Dual range space: matrix interpretation

incidence matrix of range space $p'_1 \ p_1 \ p_2 \ p_3 \ p_4$ $D_1 \ 1 \ 1 \ 1 \ 0 \ 0$ $D_2 \ 1 \ 1 \ 1 \ 0 \ 1$

 $D_3 \ 1 \ 1 \ 0 \ 1 \ 0$

Dual range space: matrix interpretation

We obtain the matrix of the dual range space by transposition + removing/merging duplicates

 $D_1 \ D_2 \ D_3$

- $p'_1 \ 1 \ 1 \ 1$
- $p_1 \ 1 \ 1 \ 1$
- $p_2 \ 1 \ 1 \ 0$
- $p_3 \ 0 \ 0 \ 1$
- 1 0 $\mathbf{0}$ p_4

incidence matrix of range space $p'_1 p_1 p_2 p_3 p_4$ $D_1 \ 1 \ 1 \ 1 \ 0 \ 0$ $D_2 \ 1 \ 1 \ 1 \ 0 \ 1$ $D_3 \ 1 \ 1 \ 0 \ 1 \ 0$

If a range space has VC-dim δ , then the dual VC-dim $\delta^* < 2^{\delta+1}$

. . . or in short: if δ is constant, so is δ^* .

If a range space has VC-dim δ , then the dual VC-dim $\delta^* < 2^{\delta+1}$

Why? Suppose $\delta^* \geq 2^{\delta'}$ and prove that $\delta \geq \delta'$, e.g., below $\delta^* = 4 = 2^2$

If a range space has VC-dim δ , then the dual VC-dim $\delta^* < 2^{\delta+1}$

Why?

Suppose $\delta^* \geq 2^{\delta'}$ and prove that $\delta \geq \delta'$, e.g., below $\delta^* = 4 = 2^2$ There are δ^* rows (= ranges) for which all 2^{δ^*} columns occur

If a range space has VC-dim δ , then the dual VC-dim $\delta^* < 2^{\delta+1}$

Why?

Suppose $\delta^* \geq 2^{\delta'}$ and prove that $\delta \geq \delta'$, e.g., below $\delta^* = 4 = 2^2$ There are δ^* rows (= ranges) for which all 2^{δ^*} columns occur Take columns that together count from 0 to $\delta^* - 1 = 2^{\delta'} - 1$ in binary

If a range space has VC-dim δ , then the dual VC-dim $\delta^* < 2^{\delta+1}$

Why?

Suppose $\delta^* \geq 2^{\delta'}$ and prove that $\delta \geq \delta'$, e.g., below $\delta^* = 4 = 2^2$ There are δ^* rows (= ranges) for which all 2^{δ^*} columns occur Take columns that together count from 0 to $\delta^* - 1 = 2^{\delta'} - 1$ in binary These are $\delta' = \log \delta^*$ shattered columns $\Rightarrow \delta \geq \delta'$

In the previous proof: Could we have picked two different columns?

- A no
- yes, we could have picked the second column differently B
- yes, we could have picked completely different columns

In the previous proof: Could we have picked two different columns?

Α no

Approximation Algorithm for Geometric Set Cover sampling ranges with reweighing

The algorithm: preparation

Given (X, \mathcal{R}) , n = |X|, $m = |\mathcal{R}|$, and dual VC-dimension δ^* , the algorithm computes a set cover which uses $\mathcal{O}(\delta^*k \cdot \log(\delta^*k))$ sets where k is the number of sets used by the optimal solution.

The algorithm: preparation

Given (X, \mathcal{R}) , n = |X|, $m = |\mathcal{R}|$, and dual VC-dimension δ^* , the algorithm computes a set cover which uses $\mathcal{O}(\delta^*k \cdot \log(\delta^*k))$ sets where k is the number of sets used by the optimal solution.

Algorithm assumes k is known. We run it for $k=1,2,4,8,\ldots$ until it finds a solution Pick $\varepsilon = \frac{1}{\Lambda k}$

Assign each range r a weight W(r). Initially, W(r) = 1 $W(\mathcal{R})$ is the total weight of all the ranges in \mathcal{R} \mathcal{R}' is a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$ Each range $r \in \mathcal{R}$ has probability $W(r)/W(\mathcal{R})$ of being selected

- 1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$
- 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- 4. if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p
- 5. sample new \mathcal{R}'
- 6. return \mathcal{R}'

- 1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$
- 2. While \mathcal{R}' does not cover all points in U
- let $p \in U$ be the point not covered by \mathcal{R}' 3.
- if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 4.
- sample new \mathcal{R}' 5.
- 6. return \mathcal{R}'

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- let $p \in U$ be the point not covered by \mathcal{R}' 3.
- if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 4. sample new \mathcal{R}' 5.

6. return \mathcal{R}'

Let
$$\varepsilon=2/3$$
 and $|\mathcal{R}'|=2$

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- 4. if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 5. sample new \mathcal{R}'

6. return
$$\mathcal{R}'$$
 $W(r)$

Let
$$arepsilon=2/3$$
 and $|\mathcal{R}'|=2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{ \underline{red}, \underline{green} \}$

- 1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^* / \varepsilon) \log(\delta^* / \varepsilon))$ 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- 4. if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 5. sample new \mathcal{R}'
- 6. return \mathcal{R}' W(r)

Let
$$\varepsilon = 2/3$$
 and $|\mathcal{R}'| = 2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{ red, green \}$ \mathcal{R}' does not cover X, namely 6 is not covered

- 1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$
- 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- 4. if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 5. sample new \mathcal{R}'

6. return
$$\mathcal{R}'$$
 $W(r)$

Let
$$\varepsilon = 2/3$$
 and $|\mathcal{R}'| = 2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{red, green\}$ \mathcal{R}' does not cover X, namely 6 is not covered $\mathcal{R}_6 = \{purple, blue, pink\}$

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- 4. if (W(R_p) < εW(R)): double all weight of R_p
 5. sample new R'
- 6. return \mathcal{R}' W(r)

Let
$$arepsilon=2/3$$
 and $|\mathcal{R}'|=2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{red, green\}$ \mathcal{R}' does not cover X, namely 6 is not covered $\mathcal{R}_6 = \{purple, blue, pink\}$ $W(\mathcal{R}_6) = 3 < 4 = (2/3) \cdot 6 = \varepsilon W(\mathcal{R})$

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- if (W(R_p) < εW(R)): double all weight of R_p
 sample new R'

6. return
$$\mathcal{R}'$$
 $W(r)$

Let
$$arepsilon=2/3$$
 and $|\mathcal{R}'|=2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{red, green\}$ \mathcal{R}' does not cover X, namely 6 is not covered $\mathcal{R}_6 = \{purple, blue, pink\}$ $W(\mathcal{R}_6) = 3 < 4 = (2/3) \cdot 6 = \varepsilon W(\mathcal{R})$ double

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- if (W(R_p) < εW(R)): double all weight of R_p
 sample new R'

6. return
$$\mathcal{R}'$$
 $W(r)$

Let
$$\varepsilon = 2/3$$
 and $|\mathcal{R}'| = 2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{red, green\}$ \mathcal{R}' does not cover X, namely 6 is not covered $\mathcal{R}_6 = \{purple, blue, pink\}$ $W(\mathcal{R}_6) = 3 < 4 = (2/3) \cdot 6 = \varepsilon W(\mathcal{R})$ double

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- let $p \in U$ be the point not covered by \mathcal{R}' 3.
- if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 4. sample new \mathcal{R}' 5.
- 6. return \mathcal{R}'

Let
$$arepsilon=2/3$$
 and $|\mathcal{R}'|=2$

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- let $p \in U$ be the point not covered by \mathcal{R}' 3.
- if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 4. sample new \mathcal{R}' 5.

6. return
$$\mathcal{R}'$$
 $W(r)$

Let
$$\varepsilon = 2/3$$
 and $|\mathcal{R}'| = 2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{purple, blue\}$

- 1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^* / \varepsilon) \log(\delta^* / \varepsilon))$ 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- 4. if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 5. sample new \mathcal{R}'
- 6. return \mathcal{R}' W(r)

Let
$$arepsilon=2/3$$
 and $|\mathcal{R}'|=2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{ purple, blue \}$ \mathcal{R}' does not cover X, namely 7 is not covered

- 1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$
- 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- 4. if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 5. sample new \mathcal{R}'

6. return
$$\mathcal{R}'$$
 $W(r)$

Let
$$\varepsilon = 2/3$$
 and $|\mathcal{R}'| = 2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{purple, blue\}$ \mathcal{R}' does not cover X, namely 7 is not covered $\mathcal{R}_7 = \{red, green, orange, pink\}$

- 1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$
- 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- 4. if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 5. sample new \mathcal{R}'

6. return
$$\mathcal{R}'$$
 $W(r)$

Let
$$\varepsilon = 2/3$$
 and $|\mathcal{R}'| = 2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{purple, blue\}$ \mathcal{R}' does not cover X, namely 7 is not covered $\mathcal{R}_7 = \{red, green, orange, pink\}$ $W(\mathcal{R}_7) = 5 < 6 = (2/3) \cdot 9 = \varepsilon W(\mathcal{R})$

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- 4. if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 5. sample new \mathcal{R}'

6. return
$$\mathcal{R}'$$
 $W(r)$

Let
$$\varepsilon = 2/3$$
 and $|\mathcal{R}'| = 2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{purple, blue\}$ \mathcal{R}' does not cover X, namely 7 is not covered $\mathcal{R}_7 = \{red, green, orange, pink\}$ $W(\mathcal{R}_7) = 5 < 6 = (2/3) \cdot 9 = \varepsilon W(\mathcal{R})$ double

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- 4. if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 5. sample new \mathcal{R}'

6. return
$$\mathcal{R}'$$
 $W(r)$

Let
$$\varepsilon = 2/3$$
 and $|\mathcal{R}'| = 2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{purple, blue\}$ \mathcal{R}' does not cover X, namely 7 is not covered $\mathcal{R}_7 = \{red, green, orange, pink\}$ $W(\mathcal{R}_7) = 5 < 6 = (2/3) \cdot 9 = \varepsilon W(\mathcal{R})$ double

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- 3. Let $p \in U$ be the point not covered by \mathcal{R}'
- 4. if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 5. sample new \mathcal{R}'

6. return
$$\mathcal{R}'$$
 $W(r)$

Let
$$\varepsilon = 2/3$$
 and $|\mathcal{R}'| = 2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{ \frac{red}{pink} \}$

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- let $p \in U$ be the point not covered by \mathcal{R}' 3.
- if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 4. sample new \mathcal{R}' 5.

6. return \mathcal{R}' W(r)

Let
$$arepsilon=2/3$$
 and $|\mathcal{R}'|=2$

sample \mathcal{R}' , e.g., $\mathcal{R}' = \{red, pink\}$

 \mathcal{R}' covers X, We are done

2

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^* / \varepsilon) \log(\delta^* / \varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- let $p \in U$ be the point not covered by \mathcal{R}' 3.
- if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 4.
- sample new \mathcal{R}' 5.
- 6. return \mathcal{R}'

intuition:

1. With probability 1/2: \mathcal{R}' is ε -net

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^* / \varepsilon) \log(\delta^* / \varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- let $p \in U$ be the point not covered by \mathcal{R}' 3.
- if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 4.
- sample new \mathcal{R}' 5.
- 6. return \mathcal{R}'

intuition:

1. With probability 1/2: \mathcal{R}' is ε -net

 \rightarrow doubling happens often, but to very few ranges

1. sample \mathcal{R}' a random subset of size $\mathcal{O}((\delta^*/\varepsilon)\log(\delta^*/\varepsilon))$

- 2. While \mathcal{R}' does not cover all points in U
- let $p \in U$ be the point not covered by \mathcal{R}' 3.
- if $(W(\mathcal{R}_p) < \varepsilon W(\mathcal{R}))$: double all weight of \mathcal{R}_p 4.
- sample new \mathcal{R}' 5.
- 6. return \mathcal{R}'

intuition:

1. With probability 1/2: \mathcal{R}' is ε -net

 \rightarrow doubling happens often, but to very few ranges

2. $W(\mathcal{R})$ grows slowly, $W(\mathcal{R}_p)$ for uncovered pexponentially \rightarrow eventually p covered

Ingredients of argument

after doubling i times:

- give upper bound on $W(\mathcal{R})$ give lower bound on weight of optimal set
- compare weight of optimal and $W(\mathcal{R})$ to derive bound on $i \leq 2k \log(m/k)$
- conclude that the algorithm terminates successfully

Ingredients of argument

after doubling i times:

give upper bound on $W(\mathcal{R})$ $m = |\mathcal{R}|$

 $W_0 = m$ and $W_i =$ the weight after i^{th} doubling

Ingredients of argument

after doubling i times:

give upper bound on $W(\mathcal{R})$ $m = |\mathcal{R}|$ $W_0 = m$ and W_i = the weight after i^{th} doubling weight of R_p doubled if $W(R_p) < \varepsilon W(R)$ $W_i \le (1 + \varepsilon) W_{i-1} = (1 + \varepsilon)^i \cdot m \le m \cdot e^{\varepsilon i}$
after doubling i times:

give upper bound on $W(\mathcal{R})$

give lower bound on weight of optimal set

```
compare weight of optimal and W(\mathcal{R}) to derive bound on i \leq 2k \log(m/k)
```

after doubling i times:

give upper bound on $W(\mathcal{R})$

 $\leq m$

give lower bound on weight of optimal set

 $t_i(j)$ is the times the weight of j^{th} range in the optimal solution was doubled

the weight of the optimal set at the i^{th} iteration is $\sum_{i=1}^{k} 2^{t_i(j)}$

$$\cdot e^{\varepsilon i}$$

solution was doubled $_{1} 2^{t_{i}(j)}$

after doubling i times:

give upper bound on $W(\mathcal{R})$

< m

give lower bound on weight of optimal set

 $t_i(j)$ is the times the weight of j^{th} range in the optimal solution was doubled

the weight of the optimal set at the i^{th} iteration is $\sum_{i=1}^{k} 2^{t_i(j)}$ $2^a + 2^b > 2 \cdot 2^{\lfloor (a+b)/2 \rfloor}$

To minimize the weight of the optimal set $t_i(1) = t_i(2) = \cdots = t_i(k)$

$$\cdot e^{\varepsilon i}$$

after doubling i times:

give upper bound on $W(\mathcal{R})$ give lower bound on weight of optimal set

 $t_i(j)$ is the times the weight of j^{th} range in the optimal solution was doubled

the weight of the optimal set at the i^{th} iteration is $\sum_{i=1}^{k} 2^{t_i(j)}$ $2^{a} + 2^{b} > 2 \cdot 2^{\lfloor (a+b)/2 \rfloor}$

To minimize the weight of the optimal set $t_i(1) = t_i(2) = \cdots = t_i(k)$

minimal weight of the optimal set $> k2^{\lfloor i/k \rfloor}$

$$\cdot e^{\varepsilon i}$$

after doubling i times:

give upper bound on $W(\mathcal{R})$

give lower bound on weight of optimal set

after doubling i times:

 $\leq m \cdot e^{\varepsilon i} \\ \geq k 2^{\lfloor i/k \rfloor}$ give upper bound on $W(\mathcal{R})$ give lower bound on weight of optimal set compare weight of optimal and $W(\mathcal{R})$ to derive upper bound on ioptimal set $\subset \mathcal{R}$

$$\Rightarrow k 2^{\lfloor i/k \rfloor} \leq m \cdot e^{\varepsilon i} = m \cdot e^{(i/k)/4}, \text{ since } \varepsilon = \frac{1}{4k}$$

after doubling i times:

give upper bound on $W(\mathcal{R})$ give lower bound on weight of optimal set compare weight of optimal and $W(\mathcal{R})$ to derive upper bound on ioptimal set $\subset \mathcal{R}$

$$\Rightarrow k2^{\lfloor i/k \rfloor} \le m \cdot e^{\varepsilon i} = m \cdot e^{(i/k)/4}, \text{ since } \varepsilon = \frac{1}{4k}$$
$$\Rightarrow \left(\frac{2}{e^{1/4}}\right)^{i/k} \le m/k$$

after doubling i times:

give upper bound on $W(\mathcal{R})$ give lower bound on weight of optimal set compare weight of optimal and $W(\mathcal{R})$ to derive upper bound on ioptimal set $\subset \mathcal{R}$

$$\Rightarrow k2^{\lfloor i/k \rfloor} \leq m \cdot e^{\varepsilon i} = m \cdot e^{(i/k)/4}, \text{ since } \varepsilon = \frac{1}{4k}$$
$$\Rightarrow \left(\frac{2}{e^{1/4}}\right)^{i/k} \leq m/k$$

 $\Rightarrow i/k \le \log(m/k)/\log\left(\frac{2}{e^{1/4}}\right) \le 2\log(m/k)$

after doubling i times:

give upper bound on $W(\mathcal{R})$ give lower bound on weight of optimal set compare weight of optimal and $W(\mathcal{R})$ to derive upper bound on ioptimal set $\subset \mathcal{R}$

$$\Rightarrow k2^{\lfloor i/k \rfloor} \le m \cdot e^{\varepsilon i} = m \cdot e^{(i/k)/4}, \text{ since } \varepsilon = \frac{1}{4k}$$

$$\Rightarrow \left(\frac{2}{e^{1/4}}\right)^{i/k} \le m/k$$

$$\Rightarrow i/k \le \log(m/k)/\log\left(\frac{2}{e^{1/4}}\right) \le 2\log(m/k)$$

$$\Rightarrow i \le 2k\log(m/k)$$

after doubling i times:

 $\leq m \cdot e^{\varepsilon i}$ give upper bound on $W(\mathcal{R})$ give lower bound on weight of optimal set compare weight of optimal and $W(\mathcal{R})$ to derive bound on $i \leq 2k \log(m/k)$ conclude that the algorithm terminates successfully \mathcal{R}' is ε -net with probability $\geq 1/2$:

expected # iterations $\leq 4k \log(m/k)$

 $> k 2^{\lfloor i/k \rfloor}$

after doubling i times:

 $\leq m \cdot e^{\varepsilon i}$ give upper bound on $W(\mathcal{R})$ give lower bound on weight of optimal set compare weight of optimal and $W(\mathcal{R})$ to derive bound on $i \leq 2k \log(m/k)$ conclude that the algorithm terminates successfully

 \mathcal{R}' is ε -net with probability $\geq 1/2$: expected # iterations $\leq 4k \log(m/k)$ # iterations $\leq 8k \log(m/k)$ with high prob. (Chernoff)

 $> k2^{\lfloor i/k \rfloor}$

after doubling i times:

 $\leq m \cdot e^{\varepsilon \imath}$ give upper bound on $W(\mathcal{R})$ give lower bound on weight of optimal set compare weight of optimal and $W(\mathcal{R})$ to derive bound on $i \leq 2k \log(m/k)$ conclude that the algorithm terminates successfully

 \mathcal{R}' is ε -net with probability $\geq 1/2$: expected # iterations $\leq 4k \log(m/k)$ # iterations $\leq 8k \log(m/k)$ with high prob. (Chernoff)

If we need more iterations, we can assume k was guessed too small, and we double k

 $> k 2^{\lfloor i/k \rfloor}$

Quiz

How many values do we test for *k*?

- $A \quad \log n = \log |X|$
- $\mathsf{B} \quad \log m = \log |\mathcal{R}|$
- $C \min(\log m, \log n)$

Quiz

How many values do we test for *k*?

A $\log n = \log |X|$ B $\log m = \log |\mathcal{R}|$ C $\min(\log m, \log n)$

Summary for Algorithm

Given (X, R) with n = |U|, $m = |\mathcal{R}|$, and dual shattering dimension δ^* , we can compute a set cover which uses $\mathcal{O}(\delta^*k \cdot \log(\delta^*k))$ sets where k is the number of sets used by the optimal solution. The run time is $O((m + n\delta^*k \cdot \log(\delta^*k)) \cdot \log(m/k) \cdot \log(n))$ with high probability assuming we can decide if a point is inside a range in constant time.

Application to the art gallery problem

covering simple polygons with guards

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ Free placement of point p

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ Free placement of point p

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ a guard at *p* sees all of $\mathcal{V}_P(p)$ Infinity many points in P

Restrict possible placement of p to a finite subset

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Point p covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ a guard at p sees all of $\mathcal{V}_P(p)$ Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Question: Which sets cover the polygon?

$$G_{1} = \{blue\}$$

$$G_{2} = \{blue, red\}$$

$$G_{3} = \{blue, green\}$$

$$G_{4} = \{blue, green, red\}$$

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Question: Which sets cover the polygon?

$$G_{1} = \{blue\}$$

$$G_{2} = \{blue, red\}$$

$$G_{3} = \{blue, green\}$$

$$G_{4} = \{blue, green, red\}$$

Point *p* covers $\mathcal{V}_P(p) = \{q \mid q \in P, pq \subseteq P\}$ Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Question: Which sets cover the polygon?

$$G_{1} = \{blue\}$$

$$G_{2} = \{blue, red\}$$

$$G_{3} = \{blue, green\}$$

$$G_{4} = \{blue, green, red\}$$

goal: cover with as few (p) as possible

Compute range space

1. Calculate all visibility polygons for the vertices of ${\cal P}$

Compute range space

1. Calculate all visibility polygons for the vertices of ${\cal P}$

- 1. Calculate all visibility polygons for the vertices of ${\cal P}$
- 2. Create arrangement of visibility polygons

- 1. Calculate all visibility polygons for the vertices of ${\cal P}$
- 2. Create arrangement of visibility polygons

- 1. Calculate all visibility polygons for the vertices of P
- 2. Create arrangement of visibility polygons
- 3. Place a point in each face of the arrangement (or simply take set of faces)

- 1. Calculate all visibility polygons for the vertices of P
- 2. Create arrangement of visibility polygons
- 3. Place a point in each face of the arrangement (or simply take set of faces)
- 4. Label each point/faces for clarity

- 1. Calculate all visibility polygons for the vertices of ${\cal P}$
- 2. Create arrangement of visibility polygons
- 3. Place a point in each face of the arrangement (or simply take set of faces)
- 4. Label each point/faces for clarity $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$

take set of faces) 8}

- 1. Calculate all visibility polygons for the vertices of P
- 2. Create arrangement of visibility polygons
- 3. Place a point in each face of the arrangement (or simply take set of faces)
- 4. Label each point/faces for clarity $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- 5. For visibility polygons create group of visible points $red = \{1, 2, 3, 4, 5, 7, 8\}$

- 1. Calculate all visibility polygons for the vertices of ${\cal P}$
- 2. Create arrangement of visibility polygons
- 3. Place a point in each face of the arrangement (or simply take set of faces)
- 4. Label each point/faces for clarity $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- 5. For visibility polygons create group of visible points

$$red = \{1, 2, 3, 4\}$$

 $green = \{?\}$
 $S_1 = \{2, 7, 8\}$

$$S_2 = \{1, 2, 7, 8\}$$

 $S_3 = \{1, 2, 3, 4, S_4 = \{7, 8\}$

take set of faces) 8}

$\{, 5, 7, 8\}$

$7,8\}$

- 1. Calculate all visibility polygons for the vertices of ${\cal P}$
- 2. Create arrangement of visibility polygons
- 3. Place a point in each face of the arrangement (or simply take set of faces)
- 4. Label each point/faces for clarity $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- 5. For visibility polygons create group of visible points

$$red = \{1, 2, 3, 4\}$$

 $green = \{1, 2, 7\}$
 $S_1 = \{2, 7, 8\}$
 $S_2 = \{1, 2, 7, 8\}$

$$S_2 = \{1, 2, 1, 0\}$$
$$S_3 = \{1, 2, 3, 4, S_4 = \{7, 8\}$$

take set of faces) 8}

 $\{, 5, 7, 8\}$ $\{7, 8\}$

- 1. Calculate all visibility polygons for the vertices of ${\cal P}$
- 2. Create arrangement of visibility polygons
- 3. Place a point in each face of the arrangement (or simply take set of faces)
- 4. Label each point/faces for clarity $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- 5. For visibility polygons create group of visible points

 $red = \{1, 2, 3, 4, \ green = \{1, 2, 7, \ orange = \{1, 2, 7, \ orange = \{1, 2, 3, 4, \ purple = \{1, 2, 3, 4, \ blue = \{1, 2, 3, 5, 6, \ pink = \{1, 2, 3, 4, \ pink = \{1, 2, 3,$

take set of faces) 8}

$$\{5, 7, 8\}$$

 $\{, 8\}$
 $\{3, 4, 7, 8\}$
 $\{3, 4, 5, 6\}$
 $\{4, 5, 6, 7\}$

- 1. Calculate all visibility polygons for the vertices of ${\cal P}$
- 2. Create arrangement of visibility polygons
- 3. Place a point in each face of the arrangement (or simply take set of faces)
- 4. Label each point/faces for clarity $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- 5. For visibility polygons create group of visible points

 $red = \{1, 2, 3, 4,$ $green = \{1, 2, 7\}$ *orange* = $\{1, 2,$ $purple = \{1, 2, 3\}$ $blue = \{2, 3, 5, 6\}$ $pink = \{1, 2, 3, 4\}$ $\mathcal{R} = \{red, green, orange, purple, blue, pink\}$

take set of faces) 8}

$$\{5, 7, 8\}$$

 $\{, 8\}$
 $\{3, 4, 7, 8\}$
 $\{3, 4, 5, 6\}$
 $\{4, 5, 6, 7\}$

art gallery problem: set cover problem on (X, \mathcal{R})

 $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$

 $red = \{1, 2, 3, 4, 5, 7, 8\}$ $green = \{1, 2, 7, 8\}$ $orange = \{1, 2, 3, 4, 7, 8\}$ $purple = \{1, 2, 3, 4, 5, 6\}$ $blue = \{2, 3, 5, 6\}$ $pink = \{1, 2, 3, 4, 5, 6, 7\}$ $\mathcal{R} = \{red, green, orange, \\ purple, blue, pink\}$

art gallery problem: set cover problem on (X, \mathcal{R})

 $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$

 $red = \{1, 2, 3, 4, 5, 7, 8\}$ $green = \{1, 2, 7, 8\}$ $orange = \{1, 2, 3, 4, 7, 8\}$ $purple = \{1, 2, 3, 4, 5, 6\}$ $blue = \{2, 3, 5, 6\}$ $pink = \{1, 2, 3, 4, 5, 6, 7\}$ $\mathcal{R} = \{red, green, orange, \\ purple, blue, pink\}$

art gallery problem: set cover problem on (X, \mathcal{R})

dual VC-dimension is constant (see exercises)

$$X = \{1, 2, 3, 4, 5, 6, 7,$$

 $red = \{1, 2, 3, 4, 5, 7, 8\}$ $green = \{1, 2, 7, 8\}$ $orange = \{1, 2, 3, 4, 7, 8\}$ $purple = \{1, 2, 3, 4, 5, 6\}$ $blue = \{2, 3, 5, 6\}$ $pink = \{1, 2, 3, 4, 5, 6, 7\}$ $\mathcal{R} = \{ red, green, orange, \\ purple, blue, pink \}$

8}

art gallery problem: set cover problem on (X, \mathcal{R})

dual VC-dimension is constant (see exercises)

Previous algorithm applies

 $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$

 $red = \{1, 2, 3, 4, 5, 7, 8\}$ $green = \{1, 2, 7, 8\}$ *orange* = $\{1, 2, 3, 4, 7, 8\}$ $purple = \{1, 2, 3, 4, 5, 6\}$ $blue = \{2, 3, 5, 6\}$ $pink = \{1, 2, 3, 4, 5, 6, 7\}$ $\mathcal{R} = \{ red, green, orange, \\ purple, blue, pink \}$

Summary

general set cover problem: $O(\log n)$ -approximation using greedy algorithm

geometric set cover problem: $O(\log k)$ -approximation using sampling with reweighting (for finite VC-dimension)

applications: covering with disks and art gallery problem