Geometric Set Cover

sampling with reweighting

Example: Covering points with disk

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering the points.

Example: Covering points with disk

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering the points.

Example: Covering points with disk

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering the points.

range space:

Example: Covering points with disk

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering the points.

range space:
(P, Dp)

Example: Covering points with disk

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering the points.

range space:
(P, Dp)

where D\p := {PNd|dc D}

Example: Covering points with disk

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering the points.

range space:
(P, Dp)

where D\p := {PNd|dc D}

minimum set cover:
smallest D C D|p suchthat|J,.p,d =P

Example: Covering points with disk

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering the points.

range space:
(P, Dp)

where D\p := {PNd|dc D}

minimum set cover:
smallest D C D|p suchthat|J,.p,d =P

What do you know about the set cover problem?

Greedy Approximation

Greedy Algorithm:
While d uncovered points, select range that contains the most uncovered points

Greedy Approximation

Greedy Algorithm:
While d uncovered points, select range that contains the most uncovered points

What is the size of the greedy solution? 6

: R

3 I
S

Greedy Approximation

Greedy Algorithm:
While d uncovered points, select range that contains the most uncovered points

What is the size of the greedy solution? 6
2 %Is
a3

4

Greedy Approximation

Greedy Algorithm:
While d uncovered points, select range that contains the most uncovered points

What is the size of the greedy solution? 6
2 %Is
a3

4

Greedy Approximation

Greedy Algorithm:
While d uncovered points, select range that contains the most uncovered points

What is the size of the greedy solution? 6
2 %Is
S

4

Greedy Approximation

Greedy Algorithm:
While d uncovered points, select range that contains the most uncovered points

What is the size of the greedy solution?

2

4

Greedy Approximation

Greedy Algorithm:
While d uncovered points, select range that contains the most uncovered points

What is the size of the greedy solution?

2

4

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

proof sketch

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: 3 range in optimal solution with > n /k point

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: 3 range in optimal solution with > n /k point

=> first range in greedy solution contains > n/k points

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: 3 range in optimal solution with > n /k point
=> first range in greedy solution contains > n/k points

= < n(1 — 1) points remain uncovered

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: 3 range in optimal solution with > n /k point
=> first range in greedy solution contains > n/k points
= < n(1 — 1) points remain uncovered

iterate argument: after 7 steps greedy algorithm covers all but
<n(l-3)

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: 3 range in optimal solution with > n /k point
=> first range in greedy solution contains > n/k points

= < n(1 — 1) points remain uncovered

iterate argument: after 7 steps greedy algorithm covers all but
<n(l-3)

all points covered whenn(1 — +)* < 1

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

proof sketch

pigeonhole principle: 3 range in optimal solution with > n /k point
=> first range in greedy solution contains > n/k points

= < n(1 — 1) points remain uncovered

iterate argument: after 7 steps greedy algorithm covers all but
<n(l—3)

all points covered whenn(1 — +)* < 1

note: (1 — %)k <1/e

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

proof sketch
pigeonhole principle: 3 range in optimal solution with > n /k point
=> first range in greedy solution contains > n/k points
= < n(1 — 1) points remain uncovered

iterate argument: after 7 steps greedy algorithm covers all but
<n(l-3)

all points covered whenn(1 — +)* < 1
note: (1 — %)k <1le

=> all points covered fori = klnn = O(klogn)

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

Can we do better?

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

Can we do better?

no, for general set systems: no polynomial-time
approximation algorithm with approximation
factor better that O(logn) (if P #% N P)

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

Can we do better?

no, for general set systems: no polynomial-time
approximation algorithm with approximation
factor better that O(logn) (if P #% N P)

yes, for geometric range spaces

Greedy Approximation

size of greedy solution: O(klogn),
n: number of points, k: size of optimal solution

Can we do better?

no, for general set systems: no polynomial-time
approximation algorithm with approximation
factor better that O(logn) (if P #% N P)

yes, for geometric range spaces
today: algorithm with solution of size O(k log k)

Dual range spaces

warm-up: covering points that are in many ranges

Dual range space

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering
the points that are in at least £|D| ranges.

Dual range space

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering
the points that are in at least £|D| ranges.

Dual range space of (X, R): (R, X™),
where X* ={R, |pe X}, R,={re R|per}

Dual range space

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering
the points that are in at least £|D| ranges.

Dual range space of (X, R): (R, X™),
where X* ={R, |pe X}, R,={re R|per}

Here: R =D,
dual ranges: set of disks with a common point

Dual range space

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering
the points that are in at least £|D| ranges.

Dual range space of (X, R): (R, X™),
where X* ={R, |pe X}, R,={re R|per}

Here: R =D, % I ‘
dual ranges: set of disks with a common point “' 3 face
Intuition:

each face in the arrangement of disks corresponds to a
dual range, namely to set of disks that include this face

Dual range space

Given: a set of points /” and a set of disks D,
find a smallest set of disks covering
the points that are in at least £|D| ranges.

Dual range space of (X, R): (R, X™),
where X* ={R, |pe X}, R,={re R|per}

Here: R =D, % I ‘
dual ranges: set of disks with a common point “' 3 face
Intuition:

each face in the arrangement of disks corresponds to a
dual range, namely to set of disks that include this face

Dual range space

Given: a set of points /” and a set of disks D, asks for e-net in
find a smallest set of disks covering dual range space
the points that are in at least £|D| ranges.

Dual range space of (X, R): (R, X™),
where X* ={R, |pe X}, R,={re R|per}

Here: R =D, % I ‘
dual ranges: set of disks with a common point “' 3 face
Intuition:

each face in the arrangement of disks corresponds to a
dual range, namely to set of disks that include this face

Dual range space

Given: a set of points /” and a set of disks D, asks for e-net in
find a smallest set of disks covering dual range space

the points that are in at least £| D] ranges

Dual range space of (X, R): (R, X™), A

where X* ={R, |pe X}, R, ={re R|per} Q
- * S

VC-dimension of dual range space: 9 ’.

c-net theorem: ”

A random sample of the disks of size O (5 log =)

an £-net with probability > 1/2

Dual range space: matrix interpretation

incidence matrix of range space
Py p1 P2 P3 P4

Diy1 1 1 0 0
D1 1 1 0 1
Ds 1 1 0 1 0

Dual range space: matrix interpretation

We obtain the matrix of the dual range
space by transposition +
removing/merging duplicates

Dy Dy Ds
py 1 1 1
incidence matrix of range space
Py p1 P2 P3 P4
Di1 1100 p2 1 1 0
D1 110 1 p3 0 0 1

D:;1 1 010 pse O 1 0

Dual range space: VC-dimension

If a range space has VC-dim o, then the dual VC-dim 0* < 20+1

...orinshort: if 0 is constant, sois 0*.

Dual range space: VC-dimension

If a range space has VC-dim o, then the dual VC-dim 0* < 20+1

Why?
Suppose 0* > 29" and prove that § > ¢/, e.qg., below 0* = 4 = 27

pP1 P2 ...
ry 0 O o 0 0 O o0 o0 1 1 1 1 1 1
ro 0 0 o o0 1 1 1 1 0 0 0 0 1 1
rg 0O O 1 1 0 0 1 O 0 1 1 0 O
res 0 1 O 1 0 1 O O 1 0 1 0 1

Dual range space: VC-dimension

If a range space has VC-dim o, then the dual VC-dim 0* < 20+1

Why?
Suppose 0* > 29" and prove that § > ¢/, e.qg., below 0* = 4 = 27
There are 0* rows (= ranges) for which all 20" columns occur

pP1 P2 ...
ry 0 O o 0 0 O o0 o0 1 1 1 1 1 1
ro 0 0 o o0 1 1 1 1 0 0 0 0 1 1
rg 0O O 1 1 0 0 1 O 0 1 1 0 O
res 0 1 O 1 0 1 O O 1 0 1 0 1

Dual range space: VC-dimension

If a range space has VC-dim o, then the dual VC-dim 0* < 20+1

Why?

Suppose 0* > 29" and prove that § > ¢/, e.qg., below 0* = 4 = 27
There are 0™ rows (= ranges) for which all 29" columns occur

Take columns that together count from0to0* — 1 = 20" — 1in binary

P p2 ...
ry 0 0O o o o0 o0 0 0 1 1 1 1 1 1
ro 0 0 o o 1 1t 1 1 0 0 0 0 1 1
rg 0 0O 1 1 0 0 1 O 0 1 1 0 O
ry, 0 1 O 1 0 1 0 O 1 0 1 0 1

Dual range space: VC-dimension

If a range space has VC-dim o, then the dual VC-dim 0* < 20+1

Why?
Suppose 0* > 29" and prove that § > ¢/, e.qg., below 0* = 4 = 27
There are 0* rows (= ranges) for which all 20" columns occur

Take columns that together count from0to0* — 1 = 20" — 1in binary
These are ' = log * shattered columns = § > ¢’

P p2 ...
ry 0 0O o o o0 o0 0 0 1 1 1 1 1 1
ro 0 0 o o 1 1t 1 1 0 0 0 0 1 1
rg 0 0O 1 1 0 0 1 O 0 1 1 0 O
ry, 0 1 O 1 0 1 0 O 1 0 1 0 1

In the previous proof: Could we have picked two different columns?

no
yes, we could have picked the second column differently

yes, we could have picked completely different columns

Pt p2 ..
rwm 0 O O O 0 0 0 0 1 1 1 1 1 1
o O O O O 1 1 1 1 0 0 0 0 1 1
rs O O 1 1 0 0 1 O 0 1 1 0 0
ry, O 1 O 1 0 1 O O 1 0 1 0 1

In the previous proof: Could we have picked two different columns?

no
yes, we could have picked the second column differently

yes, we could have picked completely different columns

Pt p2 ..
rwm 0 O O O 0 0 0 0 1 1 1 1 1 1
o O O O O 1 1 1 1 0 0 0 0 1 1
rs O O 1 1 0 0 1 O 0 1 1 0 0
ry, O 1 O 1 0 1 O O 1 0 1 0 1

Approximation Algorithm for Geometric Set Cover

sampling ranges with reweighing

The algorithm: preparation

Given (X, R),n = |X|, m = |R/|, and dual VC-dimension ¢*, the algorithm
computes a set cover which uses O(6*k - log(d*k)) sets where k is the number
of sets used by the optimal solution.

The algorithm: preparation

Given (X, R), n = , and dual VC-dimension 0™, the algorithm
computes a set cover which uses O(0*k - log(d*k)) sets where k is the number
of sets used by the optimal solution.

Algorithm assumes k is known. We runitfork =1,2,4,8,. 'Q

until it finds a solution &‘

Picke = 4 ’
&

Assign each range r a weight W (r). Initially, W (r) =

W (R) is the total weight of all the ranges in R

R’ is a random subset of size O((6* /&) log(d* /¢))

Each range r € R has probability W (r) /W (R) of being selected

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,

5. sample new R’

6. return R’

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

red ={1,2,3,4,5,7,8}
green =41,2,7,8}

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

Let€:2/3and ‘R/‘ = 2 T@d:{1,2,3,4,5,7,8}
1 green ={1,2,7,8}

purple =4{1,2,3,4,5,
blue = {2,3,5,6}
pink =41,2,3,4,5,6,7}

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U
3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,

5. sample new R’
6. return R’

Lete = 2/3 and [R!| = 2

sample R/, e.q.,, R = {red, green}

red ={1,2,3,4,5,7,8}
green =41,2,7,8}

purple =4{1,2,3,4,5,
blue = {2,3,5,6}
pink =41,2,3,4,5,6,7}

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

/
6. return kK W(r)
Let5:2/3 and ‘R/‘ = 2 T@d:{1,2,3,4,5,7,8}
1 green =41,2,7,8}
sample R/, e.q., R’ = {red, green 1 =11,2,3,4,7,8}
, P) t J | ; 1 purple =41,2,3,4,5,6}
R’ does not cover X, namely 6 is not covered 1 blue ={2,3,5,6}
1 pink =11,2,3,4,5,6,7}

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

/
6. return R W (r)
Let5:2/3 and ‘R/‘ = 2 T@d:{1,2,3,4,5,7,8}
1 green =41,2,7,8}

sample R/, e.q., R’ = {red, green 1 =11,2,3,4,7,8}

, P : { / | ! 1 purple =41,2,3,4,5,6}
R’ does not cover X, namely 6 is not covered 1 blue = {2,3,5,6}
Re = {purple, blue, pink} 1 pink =1{1,2,3,4,5,6,7}

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

Lete = 2/3 and [R!| = 2

sample R/, e.q.,, R = {red, green}
R’ does not cover X, namely 6 is not covered

Re¢ = {purple, blue, pink}
W(Rg)=3<4=(2/3)-6=cW(R)

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

Lete = 2/3 and [R!| = 2

sample R/, e.q.,, R = {red, green}
R’ does not cover X, namely 6 is not covered

Re = {purple, blue, pink} 1
W(Re)=3<4=(2/3)-6=cW(R) double

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

Lete = 2/3 and [R!| = 2

sample R/, e.q.,, R = {red, green}
R’ does not cover X, namely 6 is not covered

DO DO DO

Re¢ = {purple, blue, pink}
W(Re)=3<4=(2/3)-6=cW(R) double

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))

2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

Lete = 2/3 and [R!| = 2

OO DO

red ={1,2,3,4,5,7,8}
green =41,2,7,8}

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

Lete = 2/3 and [R!| = 2

sample R/, e.q.,, R’ = {purple, blue}

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

/
6. return R W(r)
Let5:2/3 and ‘R/‘ = 2 T@d:{1,2,3,4,5,7,8}
1 green =41,2,7,8}
sample R/, e.q., R’ = {purple, blue 1 =11,2,3,4,7,8}
, P J purp _ ; 2 purple ={1,2,3,4,5,6}
R’ does not cover X, namely 7 is not covered 2 blue ={2,3,5,6}
2 pink =41,2,3,4,5,6,7}

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

/
6. return R W (r)
Let5:2/3 and ‘R/‘ = 2 T@d:{1,2,3,4,5,7,8}
1 green =41,2,7,8}

sample R/, e.q., R’ = {purple, blue 1 =11,2,3,4,7,8}

, P : wpurp , | 2 purple ={1,2,3,4,5,6}
R’ does not cover X, namely 7 is not covered O blue = {2,3.5.6}
R7 = {red, green, , pink} 2 pink =1{1,2,3,4,5,6,7}

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

Lete = 2/3 and [R!| = 2

sample R/, e.q.,, R’ = {purple, blue}
R’ does not cover X, namely 7 is not covered

DO DO DO

R7 = {red, green, , pink}
W(R;)=5<6=(2/3)-9=cW(R)

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

Lete = 2/3 and [R!| = 2

sample R/, e.q.,, R’ = {purple, blue}
R’ does not cover X, namely 7 is not covered

DO DO DO

R = {red, green, , pink}
W(R7)=5<6=(2/3)-9=cW(R) double

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

/
6. return R W (r
Lete = 2/3and |R/| = 2 2
2
sample R/, e.g., R" = {purple, blue} %
R’ does not cover X, namely 7 is not covered 9
4

R = {red, green, , pink}
W(R7)=5<6=(2/3)-9=cW(R) double

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

W (r
Lete = 2/3and |R/| = 2 2
2
sample R/, e.q.,, R’ = {red, pink} %
2
4

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))

2. While R’ does not cover all points in U
3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,

5. sample new R’
6. return R’/

Lete = 2/3 and [R!| = 2
sample R/, e.q., R' = {red, pink}

R’ covers X, We are done

red ={1,2,3,4,5,7,8}
green =41,2,7,8}

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

red ={1,2,3,4,5,7,8}
green = {1,2,7,8}

Intuition:

1. With probability 1/2: R’ is e-net

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))
2. While R’ does not cover all points in U

3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,
5. sample new R’

6. return R’

red ={1,2,3,4,5,7,8}
green = {1,2,7,8}

Intuition:

1. With probability 1/2: R’ is e-net
— doubling happens often, but to very few ranges

The algorithm

1. sample R’ a random subset of size O((6* /) log(d* /¢))

2. While R’ does not cover all points in U
3. letp € U be the point not covered by R’

4. if (W(R,) <eW(R)): double all weight of R,

5. sample new R’
6. return R’

Intuition:

1. With probability 1/2: R’ is e-net
— doubling happens often, but to very few ranges

2. W(R) grows slowly, W ('R,) for uncovered p
exponentially — eventually p covered

red ={1,2,3,4,5,7,8}
green =41,2,7,8}

purple = {1, 2
blue = {2, 3,5,
pink = {1,2,3

Ingredients of argument

after doubling 7 times:

give upper bound on W (R)

give lower bound on weight of optimal set

compare weight of optimal and W (R) to derive bound on ¢ < 2k log(m/k)
conclude that the algorithm terminates successfully

Ingredients of argument

after doubling 7 times:

give upper bound on W (R)
m = |R|

Wy = m and W; = the weight after jth doubling

Ingredients of argument

after doubling 7 times:

give upper bound on W (R)
m = |R|

Wy = m and W; = the weight after jth doubling
weight of R, doubled if W(R,) < eW (R)
W@' < (1+8)Wi_1 — (1—|—8)i°m Sm-esi

Ingredients of argument

after doubling 7 times:

£1

give upper bound on W (R) <m-e
give lower bound on weight of optimal set
compare weight of optimal and W (R) to derive bound on ¢ < 2k log(m/k)

Ingredients of argument

after doubling 7 times:

give upper bound on W(R) <m - e

give lower bound on weight of optimal set
t;(7) is the times the weight of 5" range in the optimal solution was doubled

the weight of the optimal set at the i*” iteration is Zle 2ti(4)

Ingredients of argument

after doubling 7 times:

£1

give upper bound on W (R) <m-e

give lower bound on weight of optimal set
t;(7) is the times the weight of 5" range in the optimal solution was doubled

the weight of the optimal set at the i*” iteration is Zle 2ti(4)

20 4 9b > 9. 9lla+b)/2]
To minimize the weight of the optimal set#;(1) = t;(2) = - -- = t;(k)

Ingredients of argument

after doubling 7 times:

give upper bound on W(R) <m - e
give lower bound on weight of optimal set

t;(7) is the times the weight of 5" range in the optimal solution was doubled

the weight of the optimal set at the i*” iteration is Zle oti(J)
20 4 9b > 9. ola+b)/2]
To minimize the weight of the optimal set#;(1) = t;(2) = - -- = t;(k)

minimal weight of the optimal set > k2L%/%.

Ingredients of argument

after doubling 7 times:

£1

give upper bound on W (R) <m-e
give lower bound on weight of optimal set > L2Li/k]

Ingredients of argument

after doubling 7 times:

give upper bound on W (R) < m- e

give lower bound on weight of optimal set > k2Li/k]

compare weight of optimal and W (’R) to derive upper bound on i
optimal set C R

= k2U/R < m . et =m - el//F)/4 sincee = ﬁ

Ingredients of argument

after doubling 7 times:

give upper bound on W (R) < m- e

give lower bound on weight of optimal set > k2Li/k]

compare weight of optimal and W (’R) to derive upper bound on i
optimal set C R

= k2L/k < m . et =m - el#/F)/4 sincee = &

| ik
= (612/4)Z/k <m/k

Ingredients of argument

after doubling 7 times:

give upper bound on W (R) < m- e

give lower bound on weight of optimal set > k2Li/k]

compare weight of optimal and W (’R) to derive upper bound on i
optimal set C R

= k2U/R < m . et =m - el//F)/4 sincee = ﬁ
= (22)"" <m/k

— i/k < log(m/k)/log (=27) < 2log(m/k)

Ingredients of argument

after doubling 7 times:

give upper bound on W (R) < m- e

give lower bound on weight of optimal set > k2Li/k]

compare weight of optimal and W (’R) to derive upper bound on i
optimal set C R

= k2U/E] < m . eft = m - e#/F)/4 since e = ﬁ
= (20) " < m/k

= i/k <log(m/k)/log (=) < 2log(m/k)
=1 < 2klog(m/k)

Ingredients of argument

after doubling 7 times:

give upper bound on W (R) < m - e

give lower bound on weight of optimal set > L2Li/k]

compare weight of optimal and W ('R) to derive bound on ¢ < 2k log(m/k)
conclude that the algorithm terminates successfully

R’ is e-net with probability > 1/2:
expected # iterations < 4k log(m/k)

Ingredients of argument

after doubling 7 times:

give upper bound on W (R) < m - e

give lower bound on weight of optimal set > L2Li/k]

compare weight of optimal and W ('R) to derive bound on ¢ < 2k log(m/k)
conclude that the algorithm terminates successfully

R’ is e-net with probability > 1/2:
expected # iterations < 4k log(m/k)
iterations < 8k log(m/k) with high prob. (Chernoff)

Ingredients of argument

after doubling 7 times:

give upper bound on W (R) < m - e

give lower bound on weight of optimal set > L2Li/k]

compare weight of optimal and W ('R) to derive bound on ¢ < 2k log(m/k)
conclude that the algorithm terminates successfully

R’ is e-net with probability > 1/2:
expected # iterations < 4k log(m/k)
iterations < 8k log(m/k) with high prob. (Chernoff)

If we need more iterations, we can assume k was
guessed too small, and we double &

How many values do we test for k?

logn = log | X|
logm = log |R|

min(logm, logn)

How many values do we test for k?

logn = log | X|
logm = log |R|

min(logm, logn)

Summary for Algorithm

Given (X, R) withn = |U|, m = |R|, and dual shattering dimension §*, we can
compute a set cover which uses O(0*k - log(0*k)) sets where k is the number
of sets used by the optimal solution. The run time is

O((m +nd*k - log(d*k)) - log(m/k) - log(n)) with high probability assuming
we can decide if a pointis inside a range in constant time.

Application to the art gallery problem

covering simple polygons with guards

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aqguardatpseesall of Vp(p)
Free placement of point p

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aqguardatpseesall of Vp(p)
Free placement of point p

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aqguardatpseesall of Vp(p)
Free placement of point p

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aqguardatpseesall of Vp(p)
Free placement of point p

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aqguardatpseesall of Vp(p)
Free placement of point p

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aqguardatpseesall of Vp(p)
Free placement of point p

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aqguardatpseesall of Vp(p)
Free placement of point p

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aqguardatpseesall of Vp(p)
Infinity many points in P
Restrict possible placement of p to a finite subset

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aguardatpseesall of Vp(p)
Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aguardatpseesall of Vp(p)
Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aguardatpseesall of Vp(p)
Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aguardatpseesall of Vp(p)
Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aguardatpseesall of Vp(p)
Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aguardatpseesall of Vp(p)
Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aguardatpseesall of Vp(p)
Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | ¢ € P,pg C P} aguardatpseesall of Vp(p)
Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Question: Which sets cover the polygon?

G1 = {blue}

Go = {blue,red}

G3 = {blue, green}

G4 = {blue, green, red}

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | g € P,pg C P} aqguardatpseesallof Vp(p)
Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Question: Which sets cover the polygon?

G1 = {blue}

Go = {blue,red}

G3 = {blue, green}
G4 = {blue, green, red}

The art gallery problem: covering a polygon

Point p covers Vp(p) = {q | g € P,pg C P} aqguardatpseesallof Vp(p)
Infinity many points in P

Restrict possible placement of p to a finite subset

Restrict placement of p to vertices of P

Question: Which sets cover the polygon?

G1 = {blue}

Go = {blue,red}

G3 = {blue, green}
G4 = {blue, green, red}

goal: cover with as few
Vp(p) as possible

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons

Compute range space

1. Calculate all visibility polygons for the vertices of P
2. Create arrangement of visibility polygons

Compute range space

1. Calculate all visibility polygons for the vertices of P

2. Create arrangement of visibility polygons
3. Place a point in each face of the arrangement (or simply take set of faces)

Compute range space

1. Calculate all visibility polygons for the vertices of P

2. Create arrangement of visibility polygons

3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity

1.

7.

Compute range space

1. Calculate all visibility polygons for the vertices of P

2. Create arrangement of visibility polygons

3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity X = {1,2,3,4,5,6,7,8}

1.

7.

Compute range space

1. Calculate all visibility polygons for the vertices of P

2. Create arrangement of visibility polygons

3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity X = {1,2,3,4,5,6,7,8}

5. For visibility polygons create group of visible points
red =41,2,3,4,5,7,8}

’I.

7.

Compute range space

1. Calculate all visibility polygons for the vertices of P

2. Create arrangement of visibility polygons

3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity X = {1,2,3,4,5,6,7,8}

5. For visibility polygons create group of visible points
red =41,2,3,4,5,7,8}

. green = {7}
. S ={2,7,8)
So =1{1,2,7,8}

: Sy —{1,2,3,4.7.8)
! S4 — {778}

Compute range space

1. Calculate all visibility polygons for the vertices of P

2. Create arrangement of visibility polygons

3. Place a point in each face of the arrangement (or simply take set of faces)

4. Label each point/faces for clarity X = {1,2,3,4,5,6,7,8}

5. For visibility polygons create group of visible points

red =41,2,3,4,5,7,8}

green =41,2,7,8}

S1=12,7,8}

So =411,2,7,8}

> Ss=11,2,3,4,7,8}
S, ={7,8}

10

Compute range space

1. Calculate all visibility polygons for the vertices of P

2. Create arrangement of visibility polygons

3. Place a point in each face of the arrangement (or simply take set of faces)

4. Label each point/faces for clarity X = {1,2,3,4,5,6,7,8}

5. For visibility polygons create group of visible points

red =41,2,3,4,5,7,8}

green =41,2,7,8}
={1,2,3,4,7,8}

1° purple ={1,2,3,4,5,6}
blue = {2,3,5,6}
/ pink ={1,2,3,4,5,6,7}

Compute range space

1. Calculate all visibility polygons for the vertices of P

2. Create arrangement of visibility polygons

3. Place a point in each face of the arrangement (or simply take set of faces)
4. Label each point/faces for clarity X = {1,2,3,4,5,6,7,8}

5. For visibility polygons create group of visible points
red =41,2,3,4,5,7,8}
green =41,2,7,8}

' —{1,2,3,4,7,8)
1° purple ={1,2,3,4,5,6}
blue = {2,3,5,6}
/° pink ={1,2,3,4,5,6,7}
R = A{red, green, ,

purple, blue, pink}

Compute range space

art gallery problem: set cover problem on (X, R)

X =1{1,2,3,4,5,6,7,8)

red =41,2,3,4,5,7,8}
green =41,2,7,8}

1.

={1,2,3,4,7,8}
purple ={1,2,3,4,5,6}

7.

blue = {2,3,5,6}
pink ={1,2,3,4,5,6,7}
R = A{red, green, ,
purple, blue, pink}

Compute range space

art gallery problem: set cover problem on (X, R)

X =1{1,2,3,4,5,6,7,8)

red =41,2,3,4,5,7,8}
green =41,2,7,8}

1.

={1,2,3,4,7,8}
purple ={1,2,3,4,5,6}

7.

blue = {2,3,5,6}
pink ={1,2,3,4,5,6,7}
R = A{red, green, ,
purple, blue, pink}

Compute range space

art gallery problem: set cover problem on (X, R)

dual VC-dimension is constant (see exercises)

X =1{1,2,3,4,5,6,7,8)

red =41,2,3,4,5,7,8}
green =41,2,7,8}

1.

={1,2,3,4,7,8}
purple ={1,2,3,4,5,6}

7.

blue = {2,3,5,6}
pink ={1,2,3,4,5,6,7}
R = A{red, green, ,
purple, blue, pink}

Compute range space

art gallery problem: set cover problem on (X, R)

dual VC-dimension is constant (see exercises)

Previous algorithm applies X = {1, 2,3,4,5,6,7, 8}

red =41,2,3,4,5,7,8}
green =41,2,7,8}

' —{1,2,3,4,7,8)
I° purple ={1,2,3,4,5,6}
blue = {2,3,5,6}
/° pink ={1,2,3,4,5,6,7}
R = A{red, green, ,

purple, blue, pink}

Summary

general set cover problem: O(log n)-approximation using greedy algorithm

geometric set cover problem: O(log k)-approximation using sampling with
reweighting (for finite VC-dimension)

applications: covering with disks and art gallery problem

