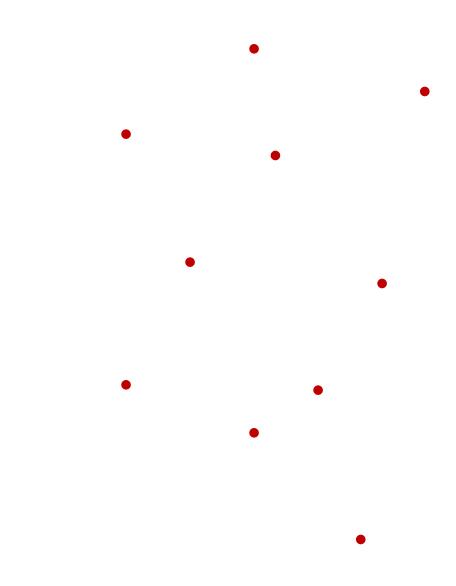
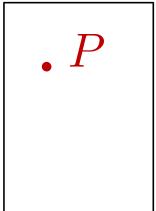
ε -sampling

range space VC-dimension ε -nets ε -samples

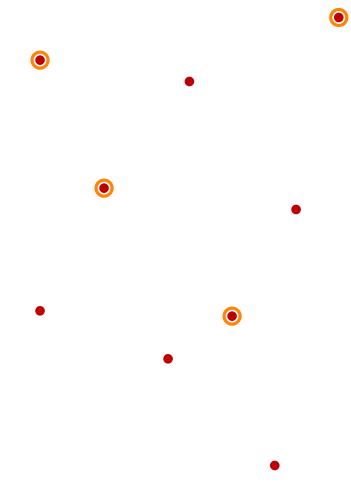
Given P,



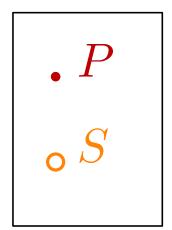


Given P,

how many points do we need to sample ($S \subset P$), such that



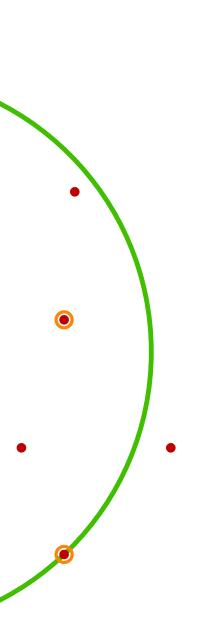
 \bigcirc

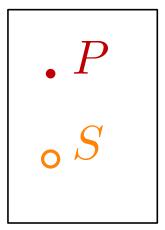


Given P,

how many points do we need to sample ($S \subset P$), such that

1. the smallest enclosing disk contains 90% of the points in P?



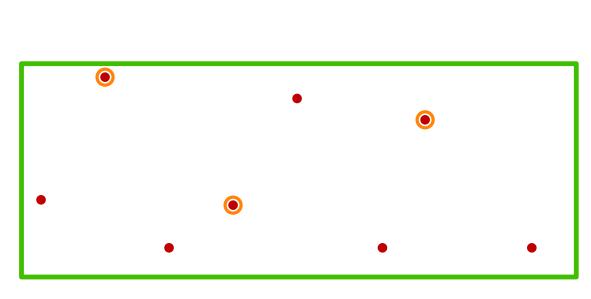


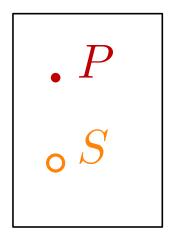
Given P,

how many points do we need to sample ($S \subset P$), such that

1. the smallest enclosing disk contains 90% of the points in P?

2. for any query rectangle rwe can estimate the number of points of P in r?



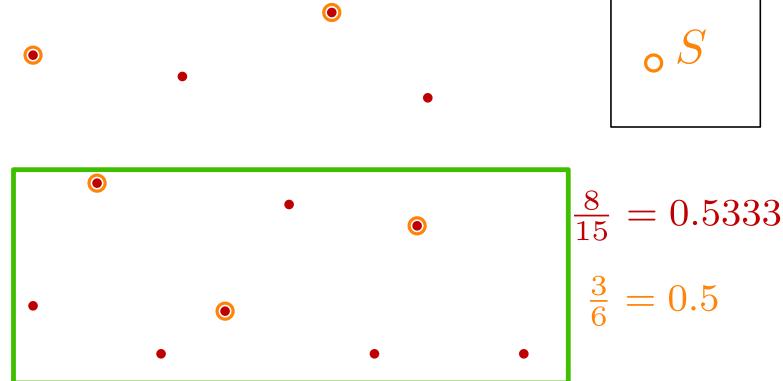


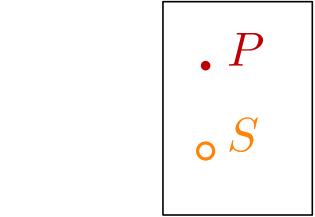
Given P,

how many points do we need to sample ($S \subset P$), such that

- 1. the smallest enclosing disk contains 90% of the points in P?
- 2. for any query rectangle r

$$\left| \frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|} \right| \le 0.25$$
 ?



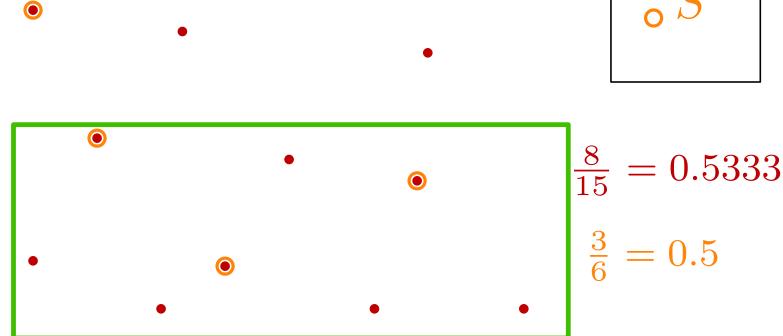


Given P,

how many points do we need to sample ($S \subset P$), such that

- 1. the smallest enclosing disk contains 90% of the points in P?
- 2. for any query rectangle r

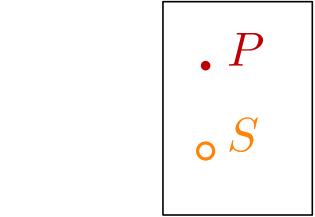
$$\left| \frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|} \right| \le 0.25$$
 ?

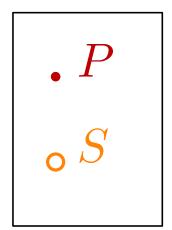


 \bigcirc

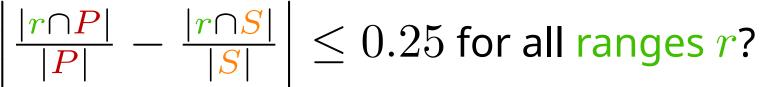
 \bigcirc

with probability 0.999

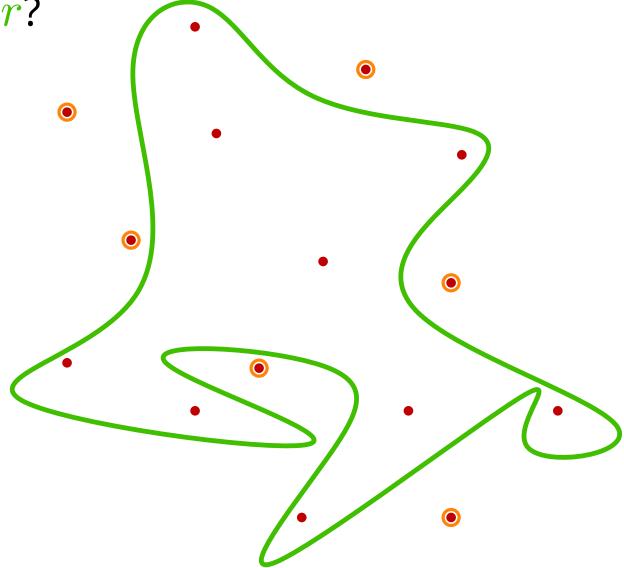


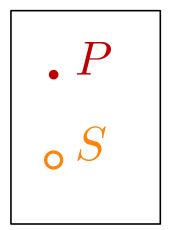


 \bigcirc



Can't work for general ranges (unless $S \approx P$)

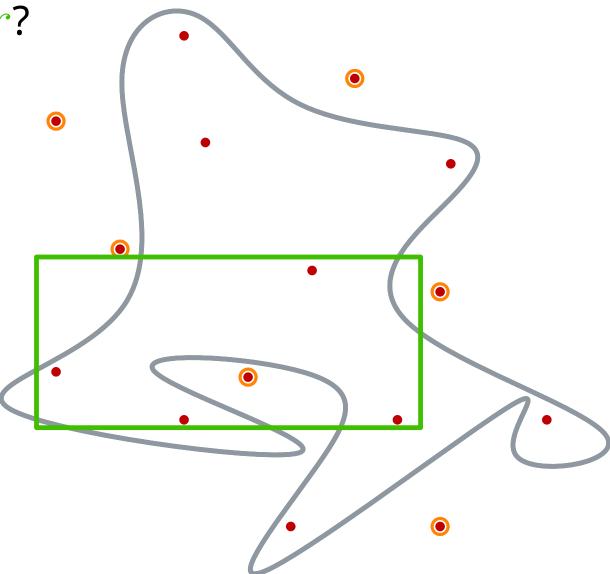


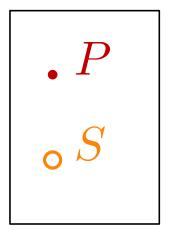


$$\left|\frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|}\right| \le 0.25 \text{ for all ranges } r?$$

Can't work for general ranges (unless $S \approx P$)

Question: Why could this work for (axis-aligned) rectangles?





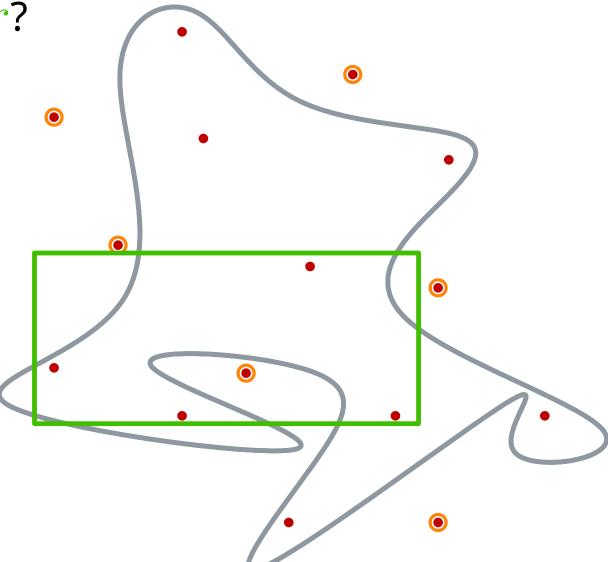
$$\left|\frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|}\right| \le 0.25 \text{ for all ranges } r?$$

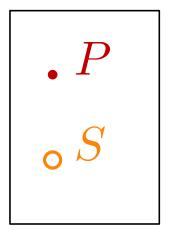
Can't work for general ranges (unless $S \approx P$)

Question: Why could this work for (axis-aligned) rectangles?

Ideas:

• for 5 points: range with 4 points will contain inner point





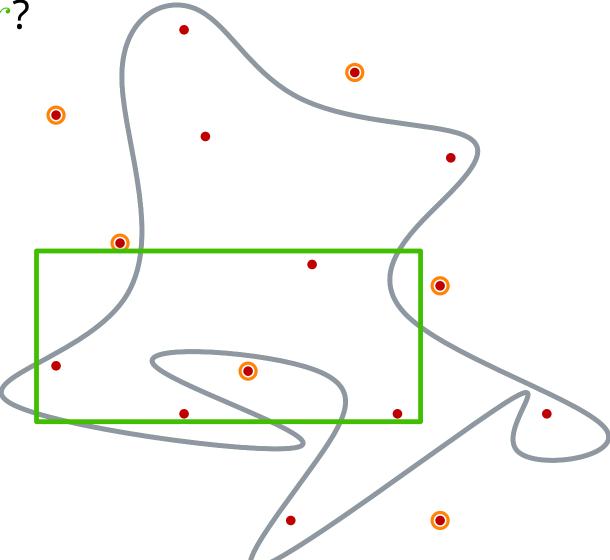
$$\left|\frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|}\right| \le 0.25 \text{ for all ranges } r?$$

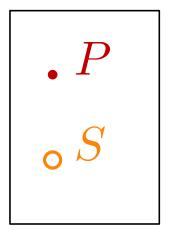
Can't work for general ranges (unless $S \approx P$)

Question: Why could this work for (axis-aligned) rectangles?

Ideas:

- for 5 points: range with 4 points will contain inner point
- 2^n subsets of P by general ranges but much fewer by rectangles





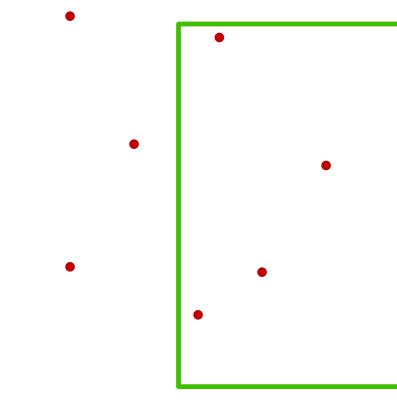
Given point set P of size n and axis-aligned rectangles as ranges, how many sets $P \cap r$ are there?

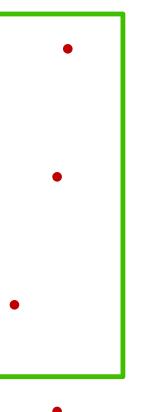
$$A \qquad O(n^2)$$

$$\mathsf{B} \qquad O(n^{\mathsf{s}})$$

$$\mathsf{C}$$
 $O(n^4)$

(we ask for a tight bound)



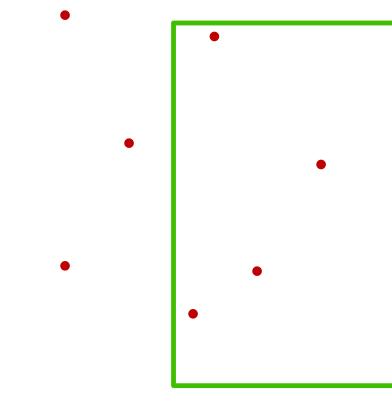


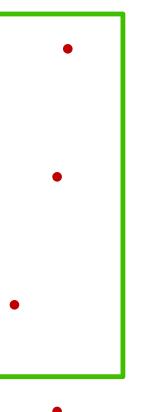
Given point set P of size n and axis-aligned rectangles as ranges, how many sets $P \cap r$ are there?

A
$$O(n^2)$$

B $O(n^3)$
C $O(n^4)$

(we ask for a tight bound)





Quiz

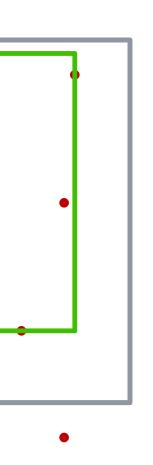
Given point set P of size n and axis-aligned rectangles as ranges, how many sets $P \cap r$ are there?

A
$$O(n^2)$$

B $O(n^3)$
C $O(n^4)$

(we ask for a tight bound)

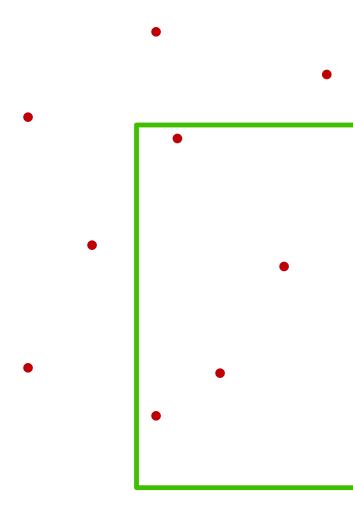
each minimal rectangle defined by left, top, right, bottom point

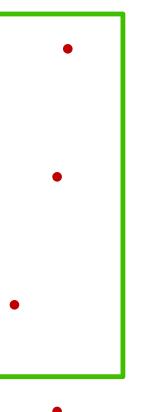


range spaces and VC-dimension

range space: pair (X, \mathcal{R})

- X is a set
- ${\mathcal R}$ is a subset of power set of X



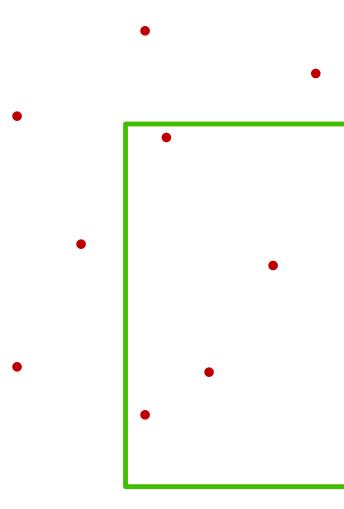


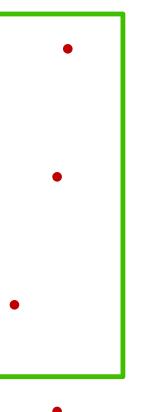
range space: pair (X, \mathcal{R})

- X is a set
- \mathcal{R} is a subset of power set of X

example

- $X = \mathbb{R}^2$
- \mathcal{R} : set of axis-aligned rectangles





range space: pair (X, \mathcal{R})

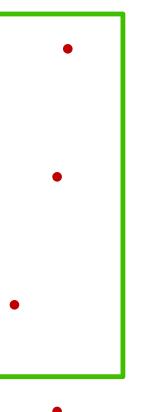
- X is a set
- \mathcal{R} is a subset of power set of X

example

- $X = \mathbb{R}^2$
- \mathcal{R} : set of axis-aligned rectangles

restriction $\mathcal{R}_{|P|}$

- $P \subset X$
- $\mathcal{R}_{|P} := \{r \cap P | r \in \mathcal{R}\}$
- $(P, \mathcal{R}_{|P})$ is a range space, e.g.,



range space: pair (X, \mathcal{R})

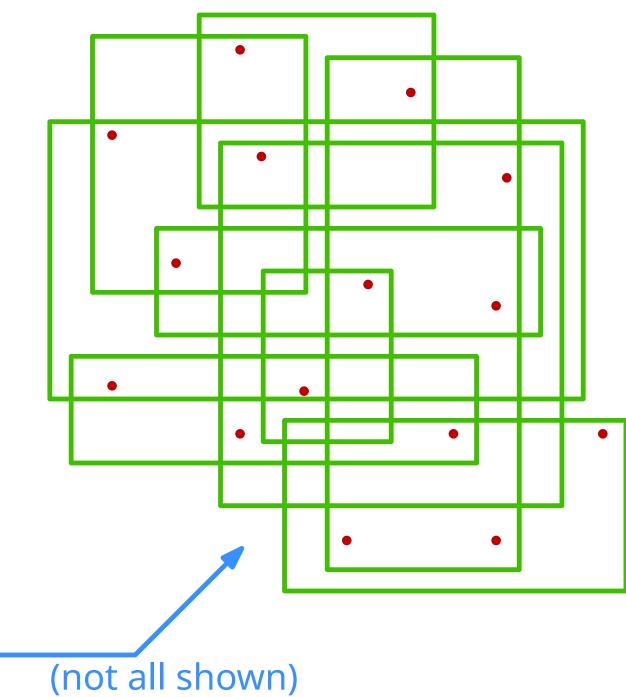
- $\bullet \ X \text{ is a set}$
- ${\mathcal R}$ is a subset of power set of X

example

- $X = \mathbb{R}^2$
- \mathcal{R} : set of axis-aligned rectangles

restriction $\mathcal{R}_{|P}$

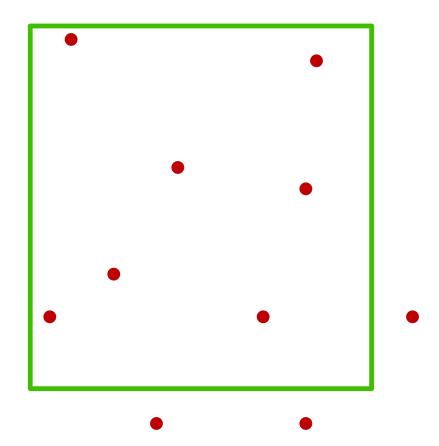
- $P \subseteq X$
- $\mathcal{R}_{|P} := \{r \cap P | r \in \mathcal{R}\}$
- $(P, \mathcal{R}_{|P})$ is a range space, e.g.,



Examples of range spaces

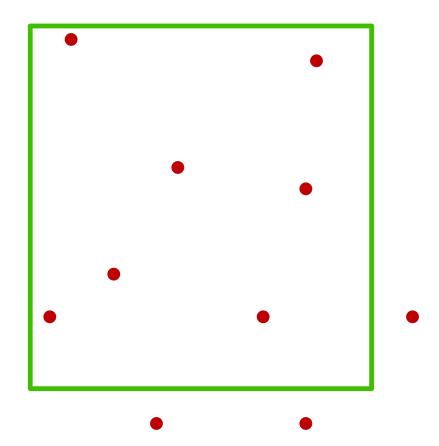
 $(\mathbb{R}, \mathcal{I})$, with $\mathcal{I} =$ set of closed intervals $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles $(\mathbb{R}^2, \mathcal{GR})$, with $\mathcal{GR} =$ set of arbitrary oriented rectangles $(\mathbb{R}^2, \mathcal{C})$, with $\mathcal{C} =$ set of closed convex sets

example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles

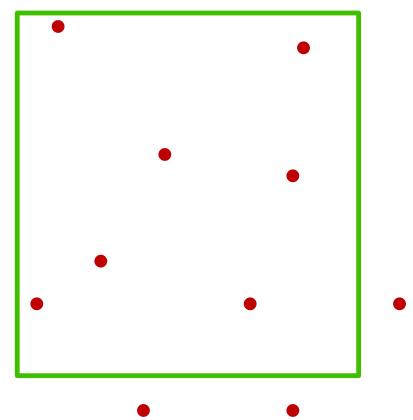


example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles

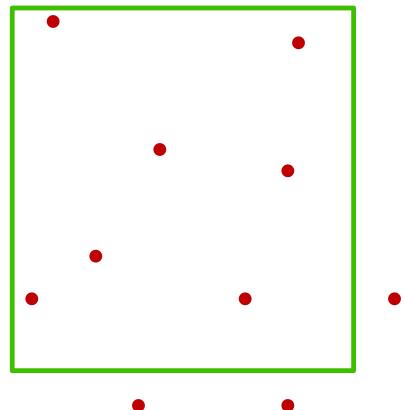
want to quantify: range space has "low complexity"



example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles want to quantify: range space has "low complexity" recall: $\mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$



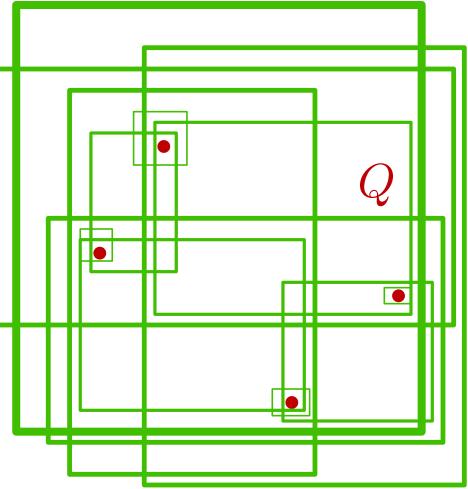
example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles want to quantify: range space has "low complexity" recall: $\mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$ Def: Q is shattered by \mathcal{R} if $R_{|Q}$ is the power set of Q



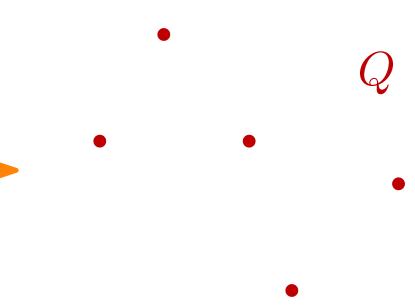
example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles want to quantify: range space has "low complexity" recall: $\mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$ Def: Q is shattered by \mathcal{R} if $R_{|Q}$ is the power set of QQuestion: Can Q be shattered by AR?

example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles want to quantify: range space has "low complexity" recall: $\mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$ Def: Q is shattered by \mathcal{R} if $R_{|Q}$ is the power set of QQuestion: Can Q be shattered by $A\mathcal{R}$?

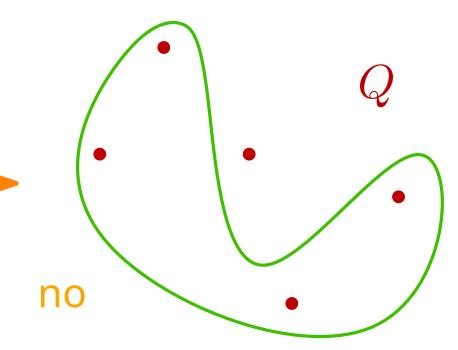
yes



example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles want to quantify: range space has "low complexity" recall: $\mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$ Def: Q is shattered by \mathcal{R} if $R_{|Q}$ is the power set of QQuestion: Can this Q be shattered by AR?

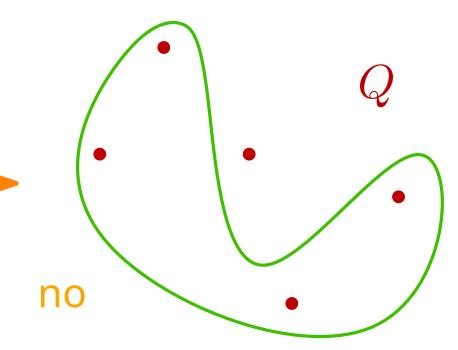


example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles want to quantify: range space has "low complexity" recall: $\mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$ Def: Q is shattered by \mathcal{R} if $R_{|Q}$ is the power set of QQuestion: Can this Q be shattered by AR?



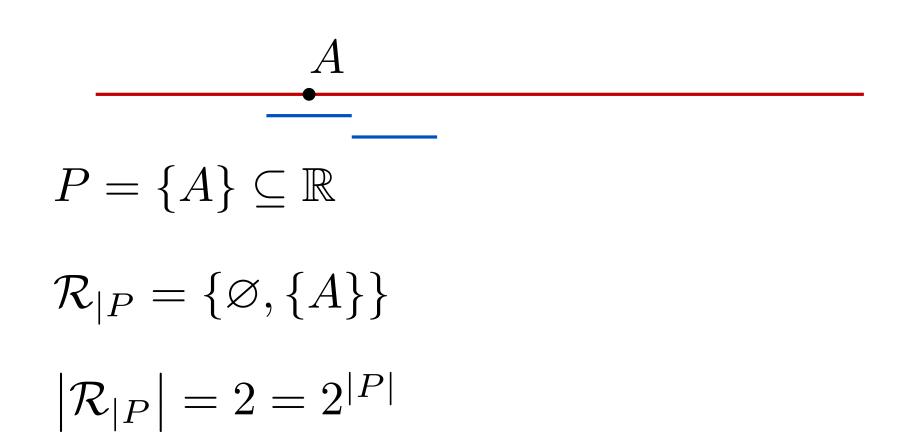
example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles want to quantify: range space has "low complexity" recall: $\mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$ Def: Q is shattered by \mathcal{R} if $R_{|Q}$ is the power set of QQuestion: Can this Q be shattered by \mathcal{AR} ?

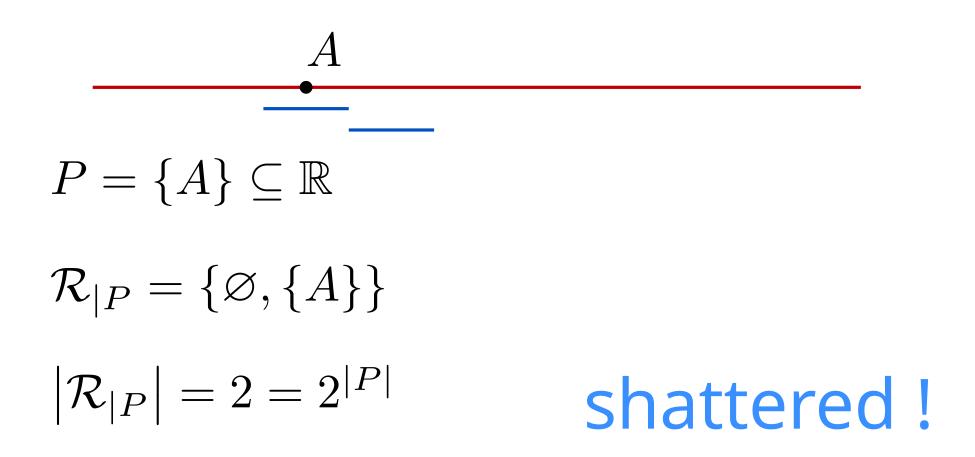
VC-dimension of a range space: maximum size of a shattered subset of X



Example $(\mathbb{R}, \mathcal{I})$

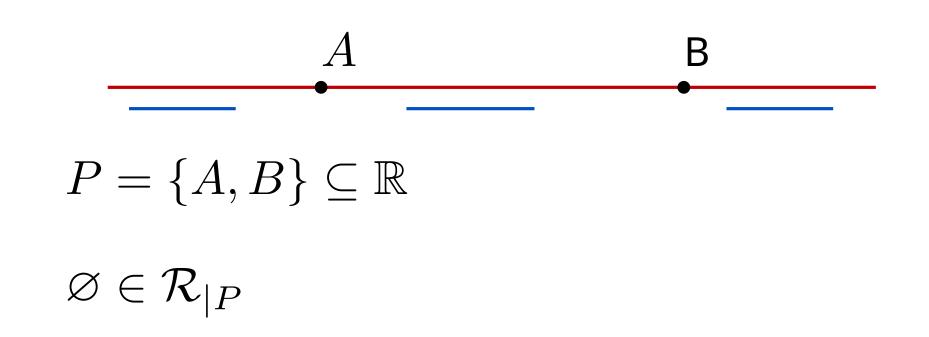




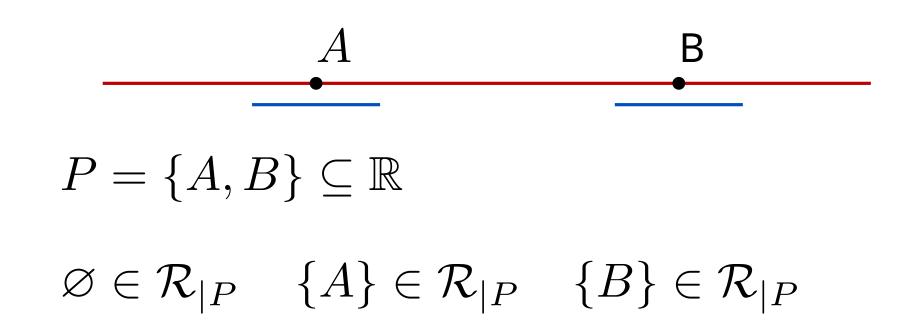


Example $(\mathbb{R}, \mathcal{I})$

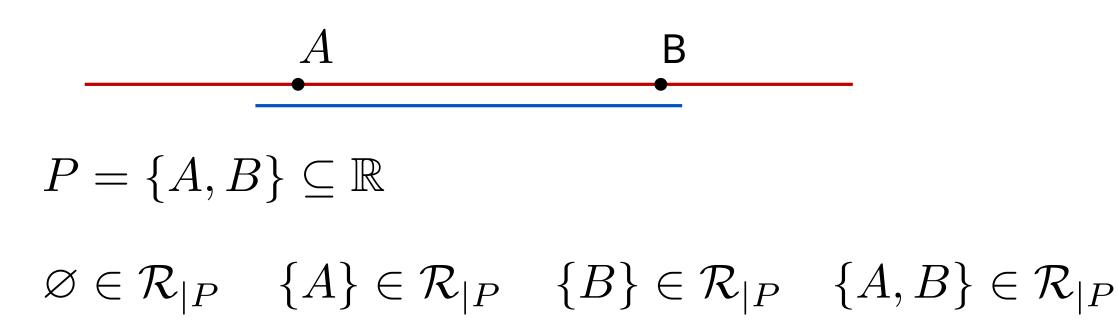
Example $(\mathbb{R}, \mathcal{I})$

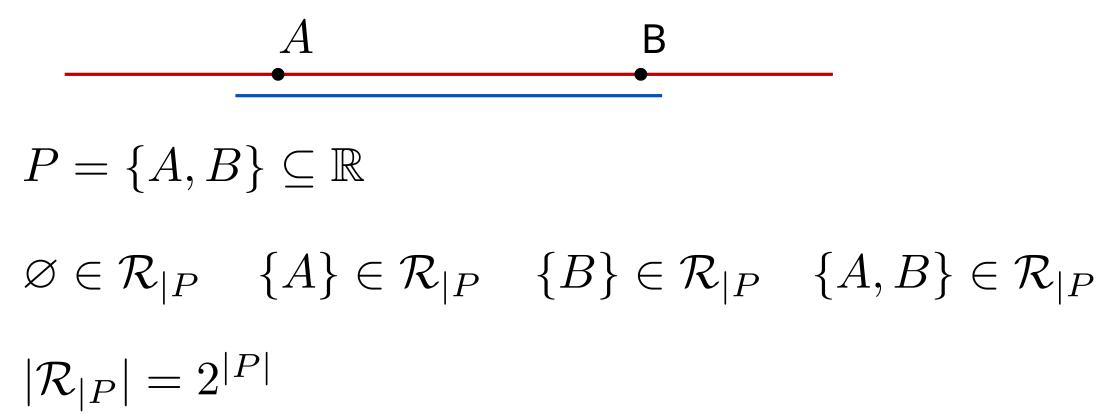


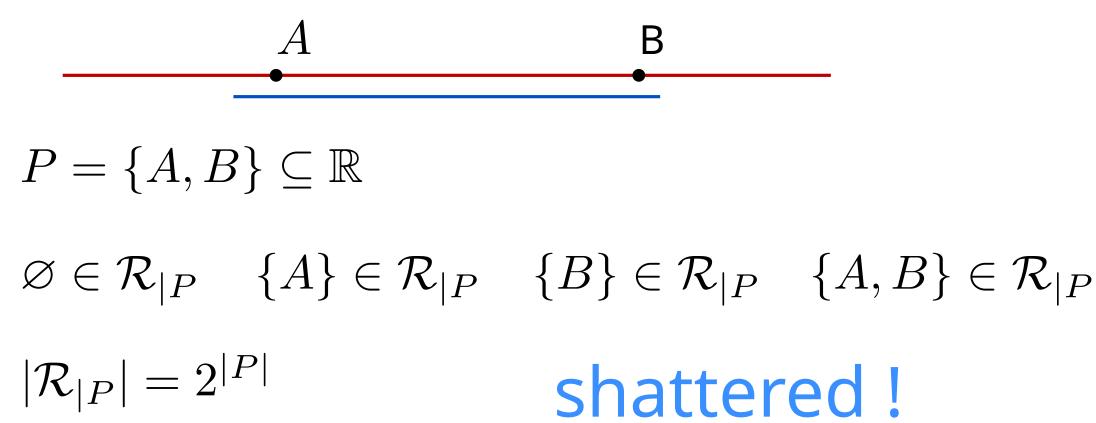
Example $(\mathbb{R}, \mathcal{I})$

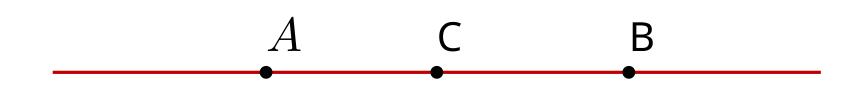


Example $(\mathbb{R}, \mathcal{I})$

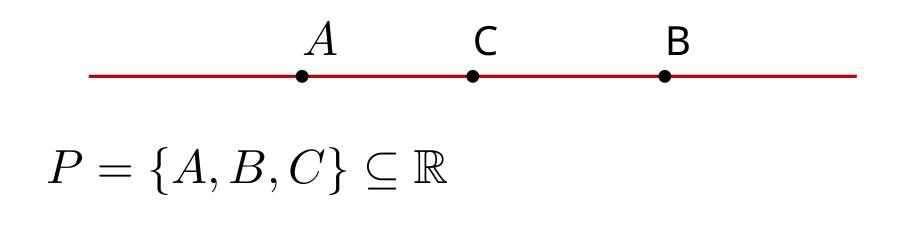


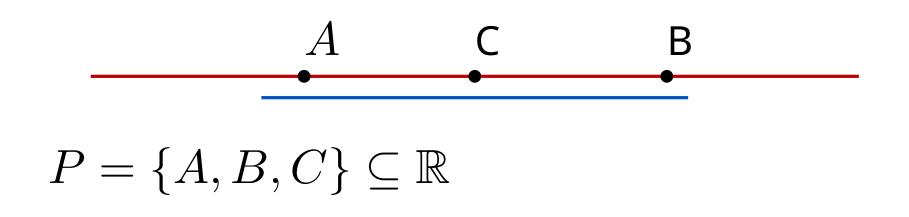


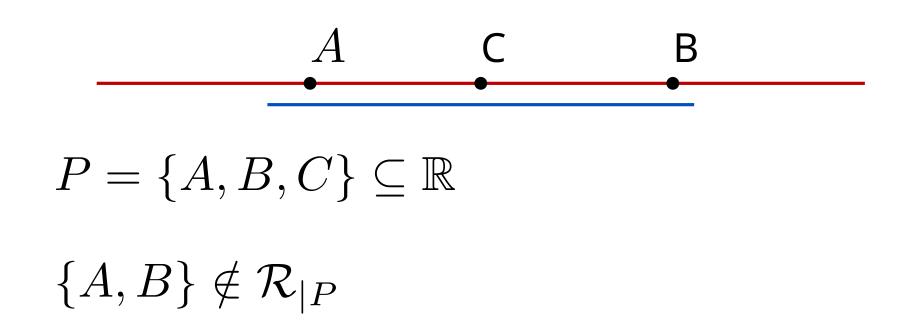


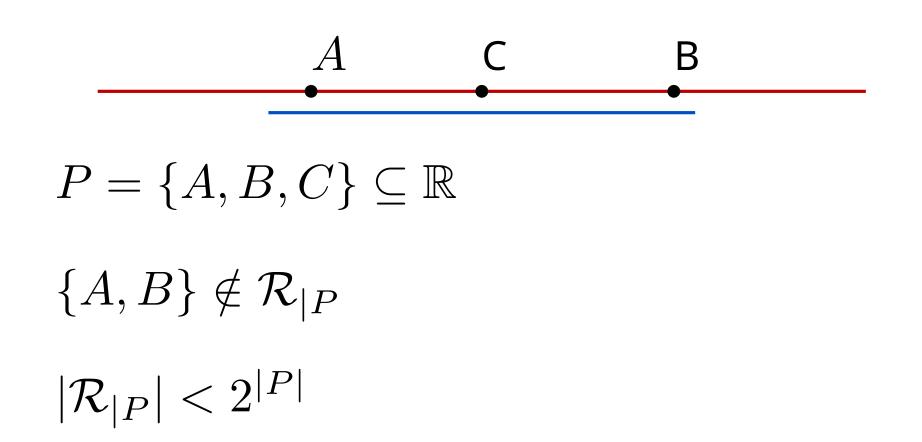


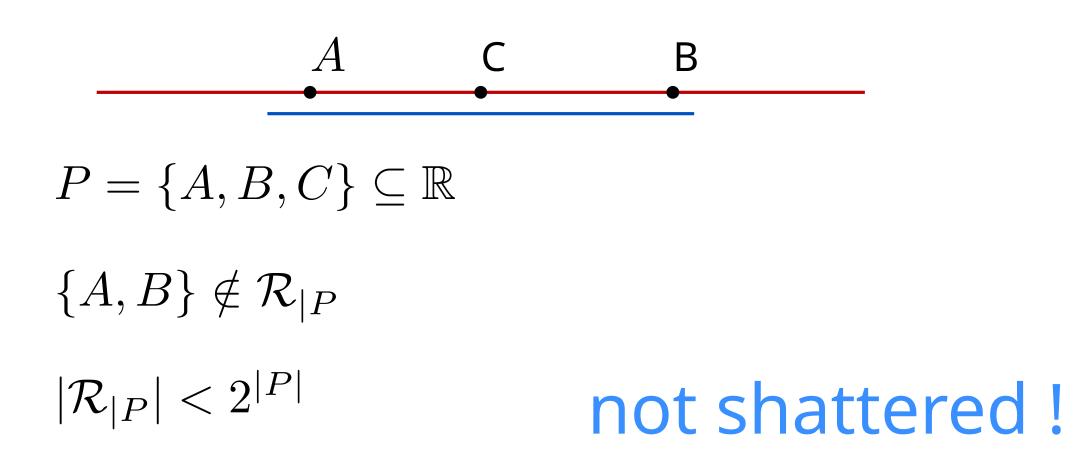
Example $(\mathbb{R}, \mathcal{I})$

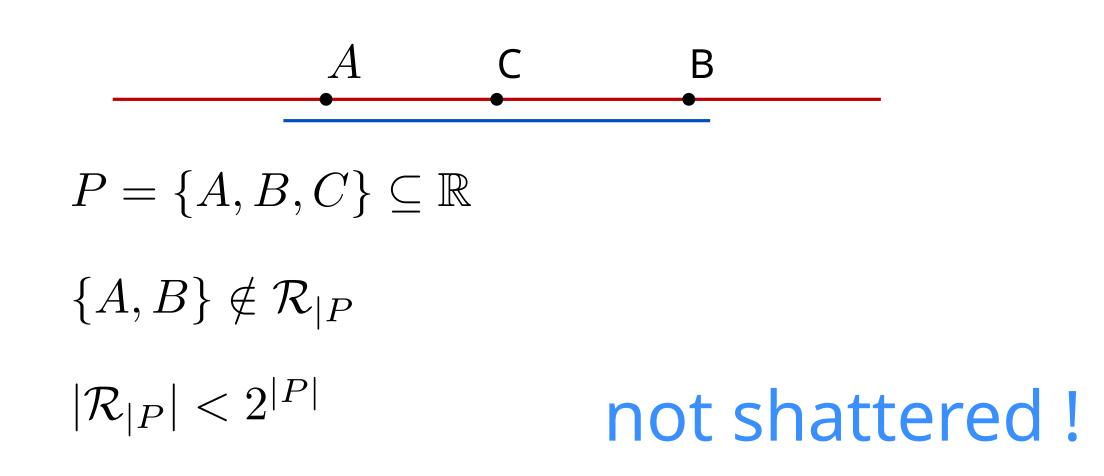




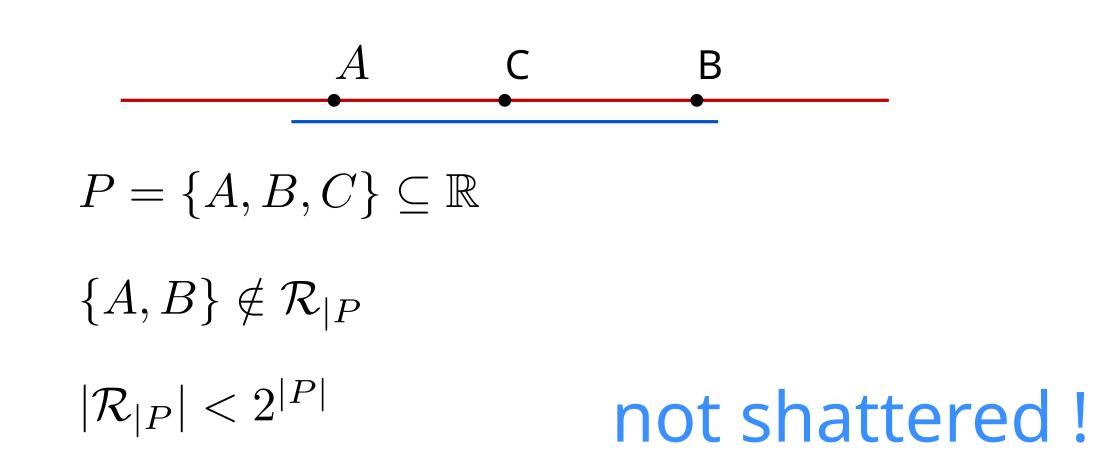








No set of 3 or more elements can be shattered.



No set of 3 or more elements can be shattered.

 ${\rm VC-dimension}=2$

Quiz

range space $(\mathbb{R}, \mathcal{I}_{\rightarrow})$ with $\mathcal{I}_{\rightarrow} = \{[a, \infty) | a \in \mathbb{R}\}$

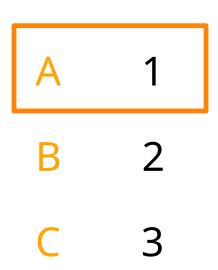
What is the VC-dimension of this space?

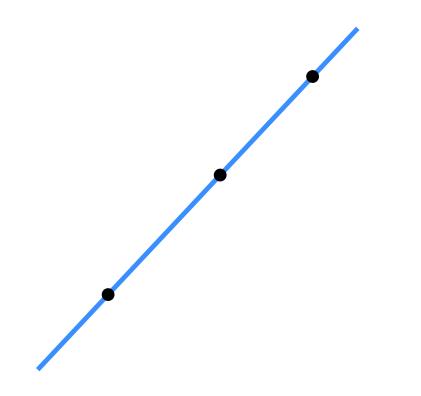
- A 1
- B 2
- C 3

Quiz

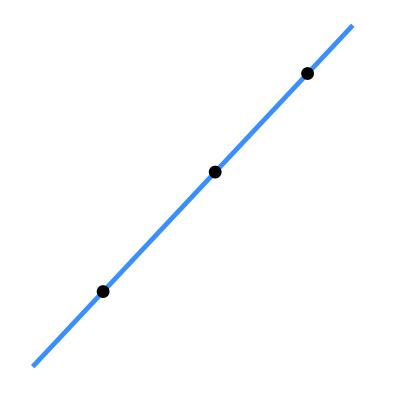
range space $(\mathbb{R}, \mathcal{I}_{\rightarrow})$ with $\mathcal{I}_{\rightarrow} = \{[a, \infty) | a \in \mathbb{R}\}$

What is the VC-dimension of this space?



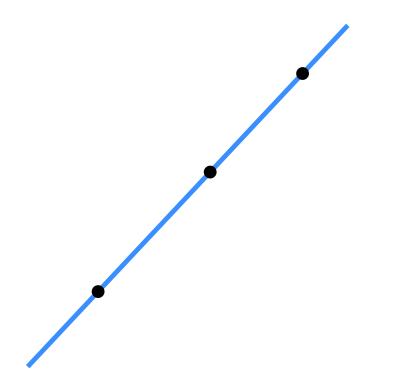


range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D}=$ set of disks



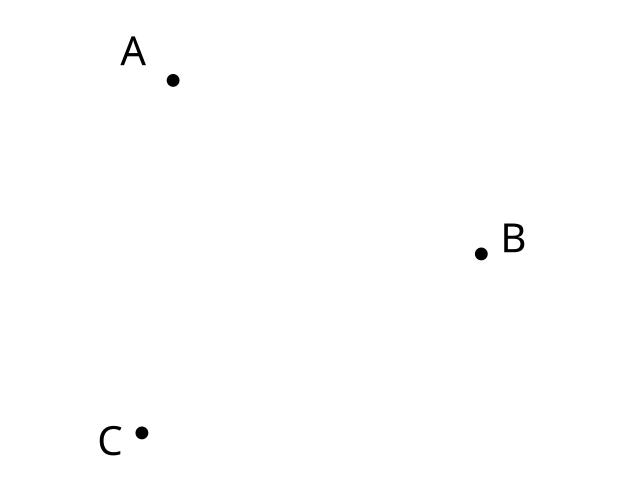
not shatter !

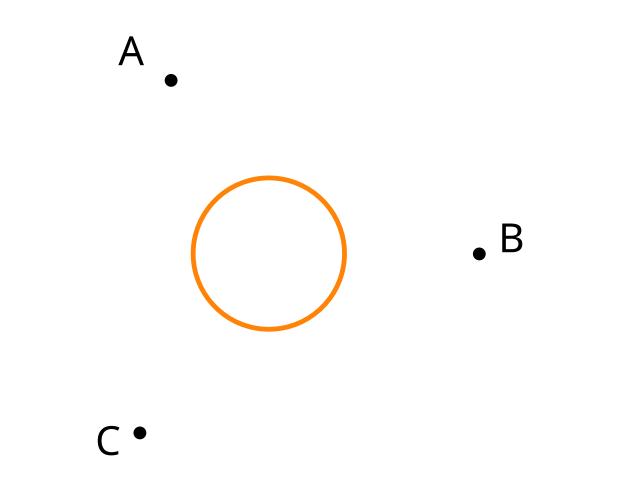
range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D}=$ set of disks

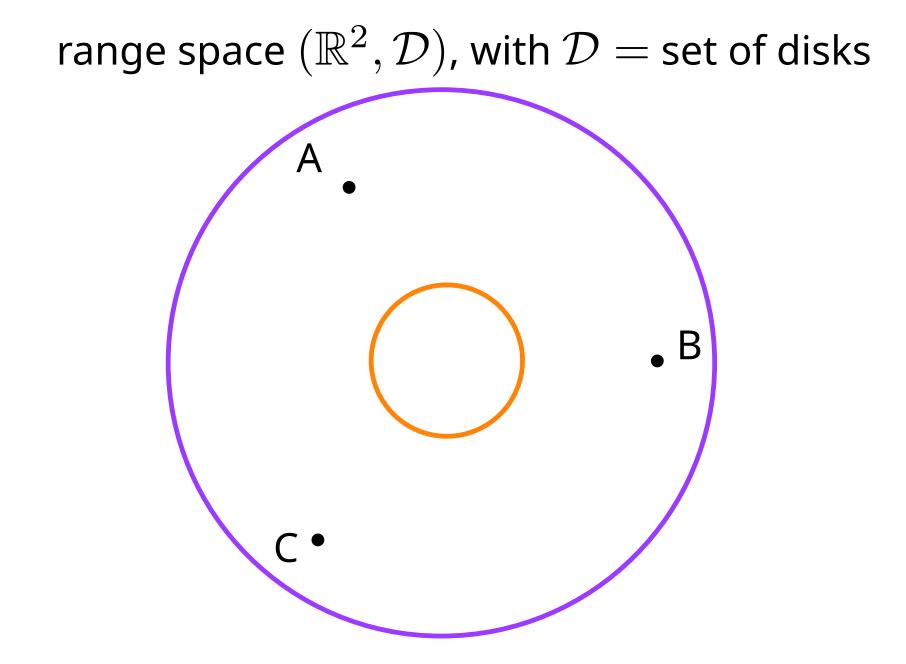


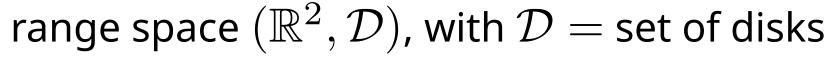
not shatter !

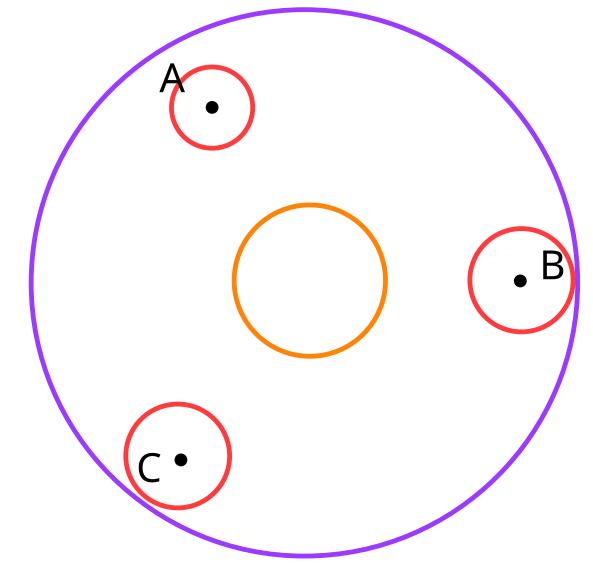
not relevant, since VC-dimension = maximum size of shattered subset

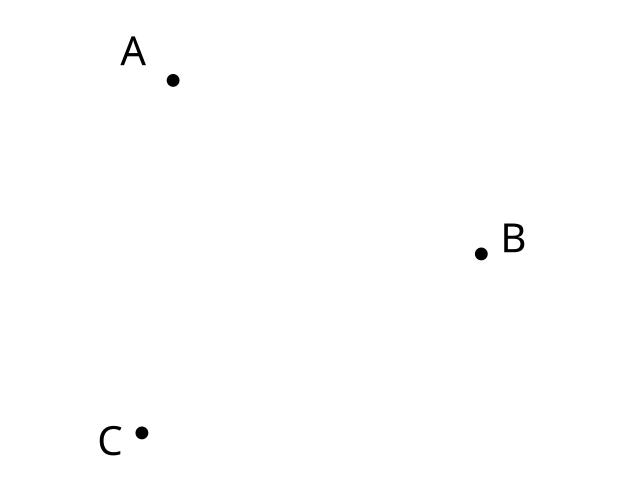


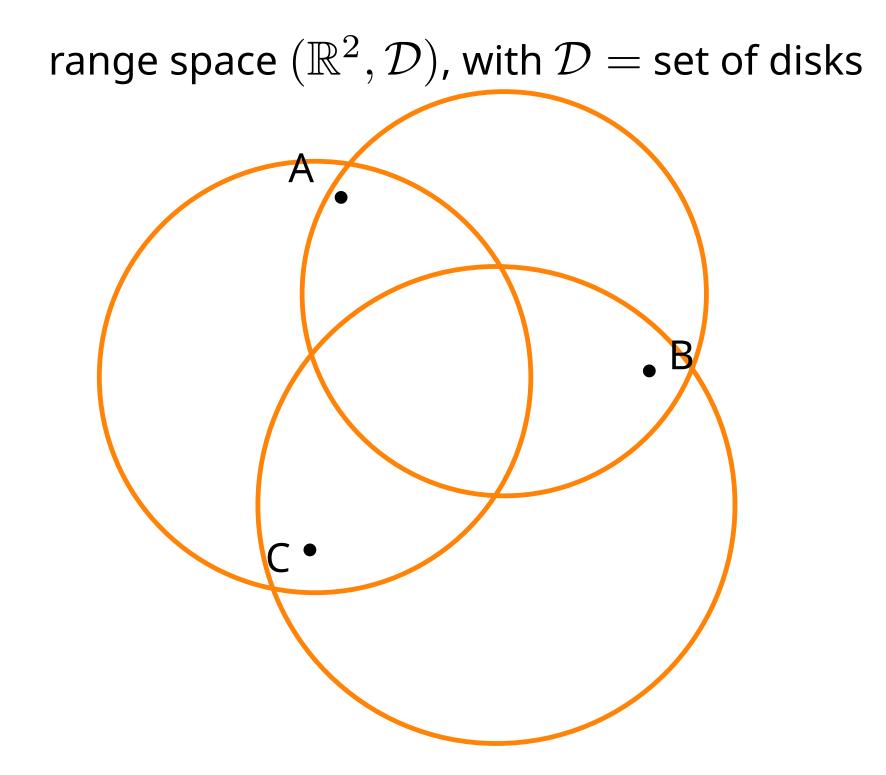


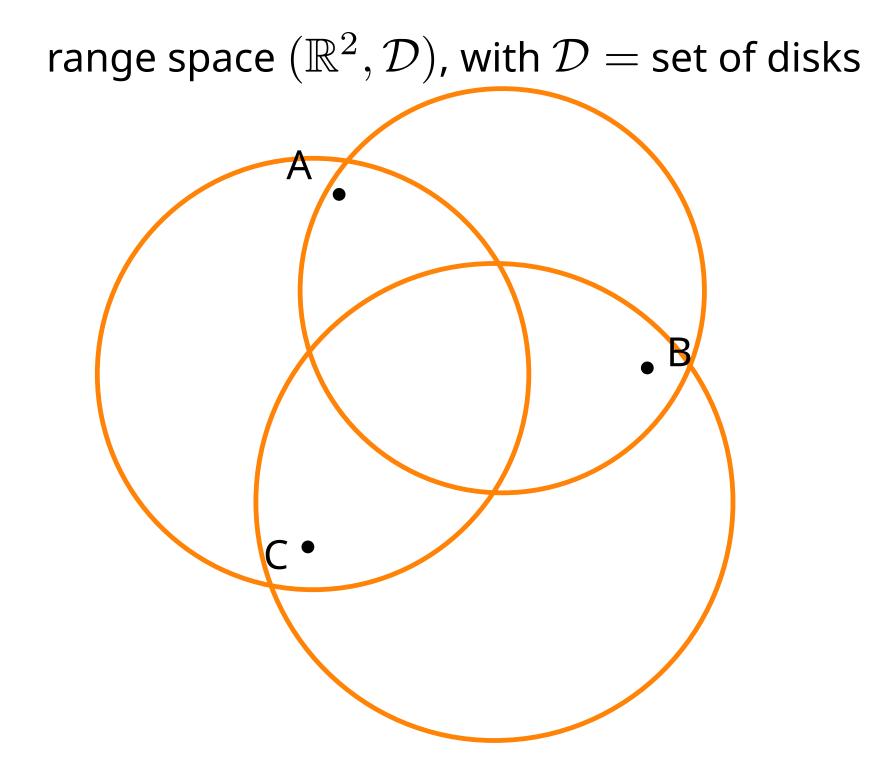




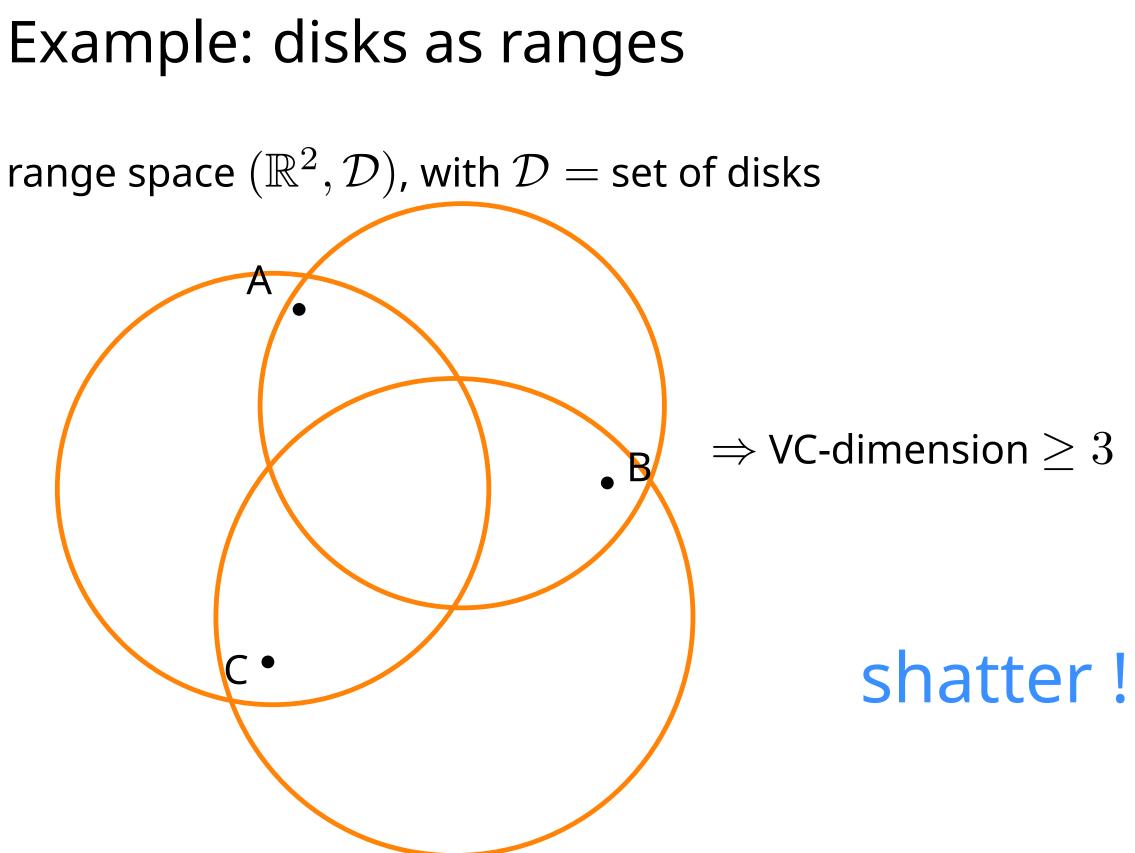




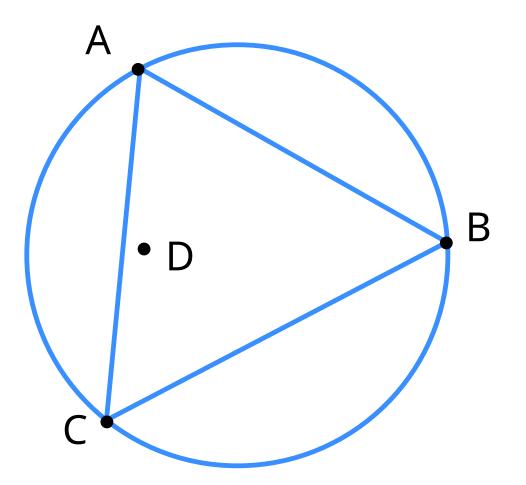




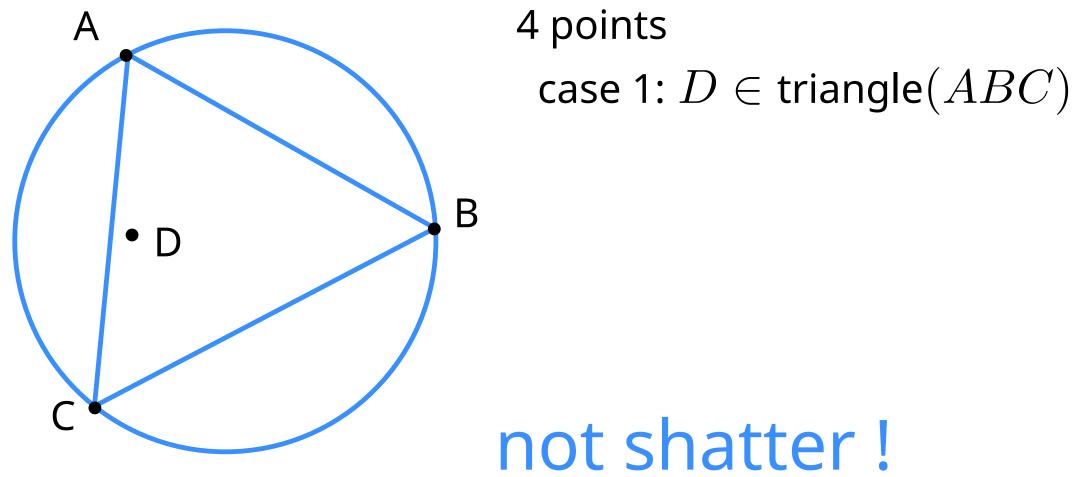
shatter!

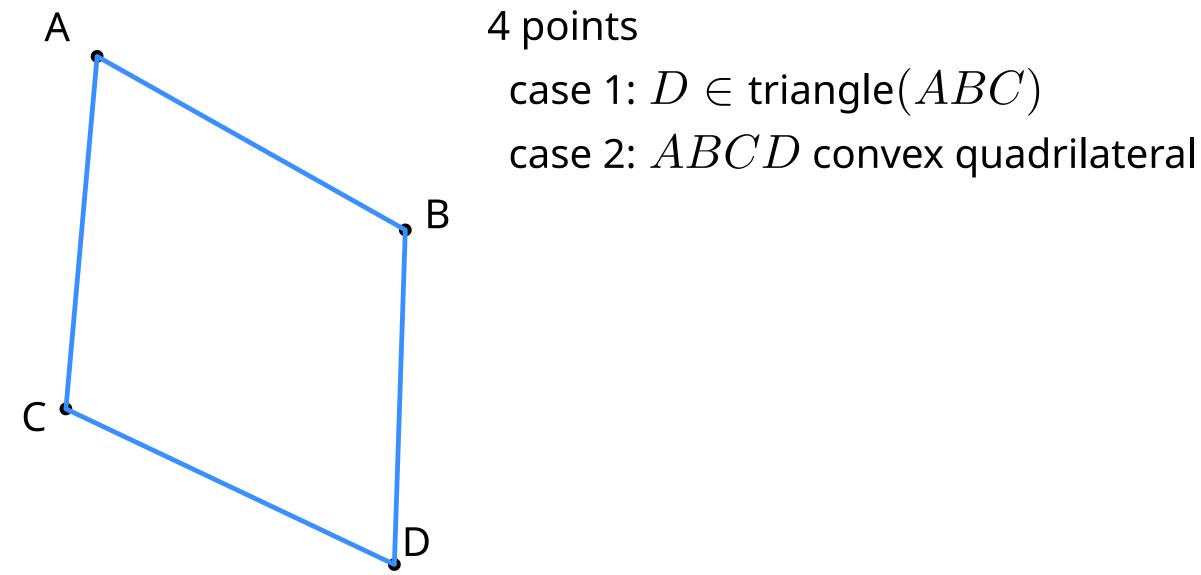


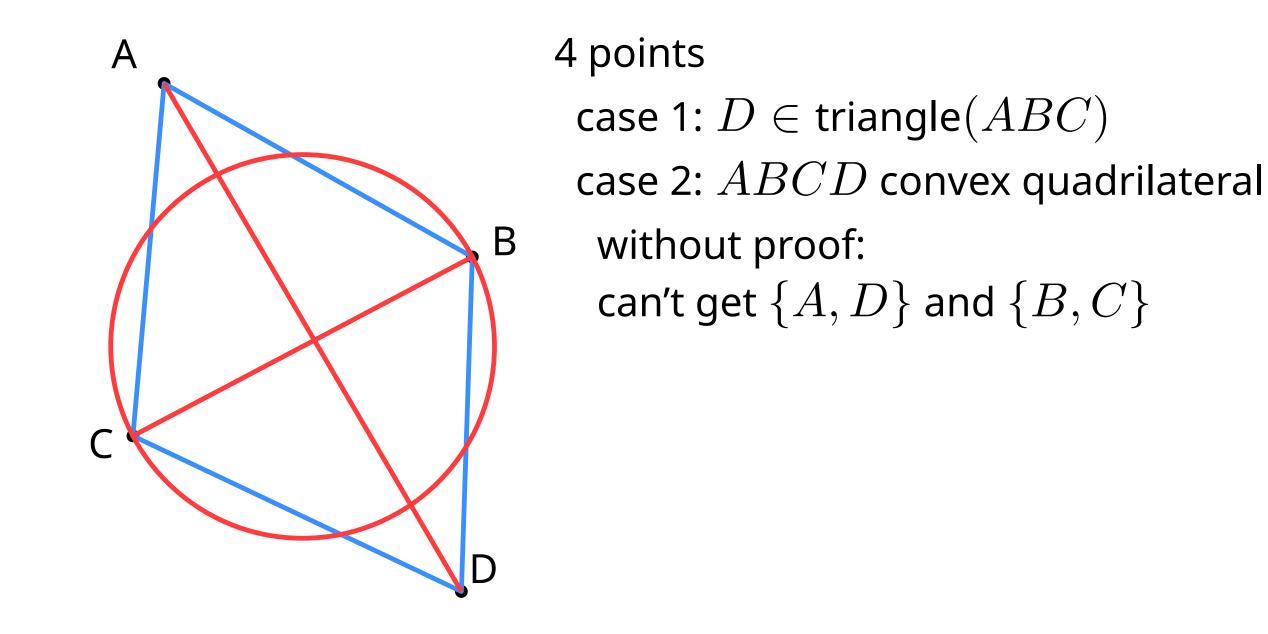
range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks

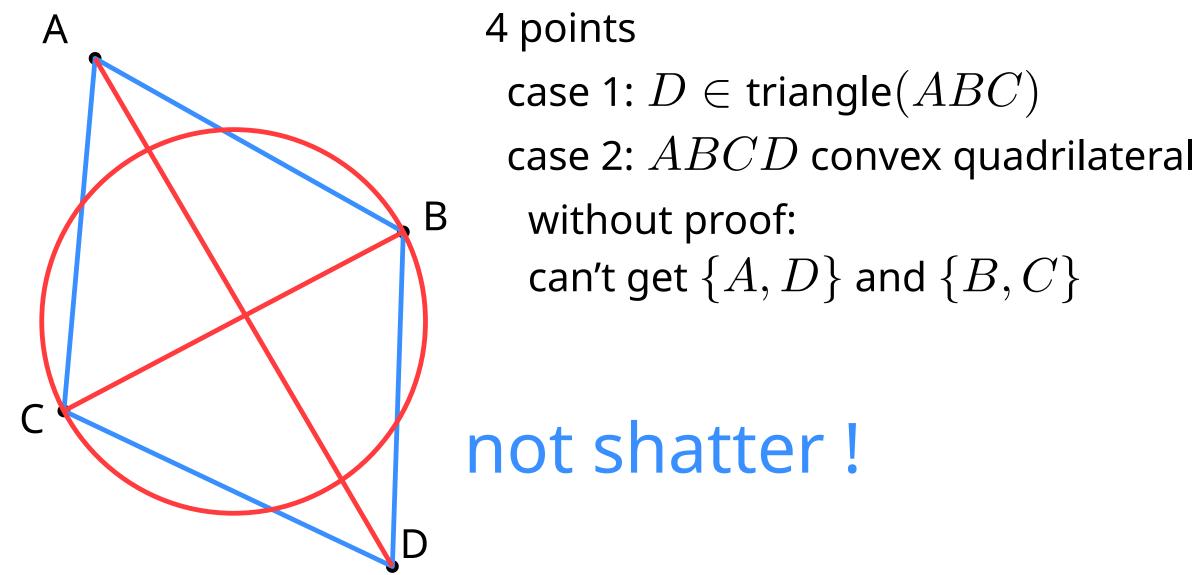


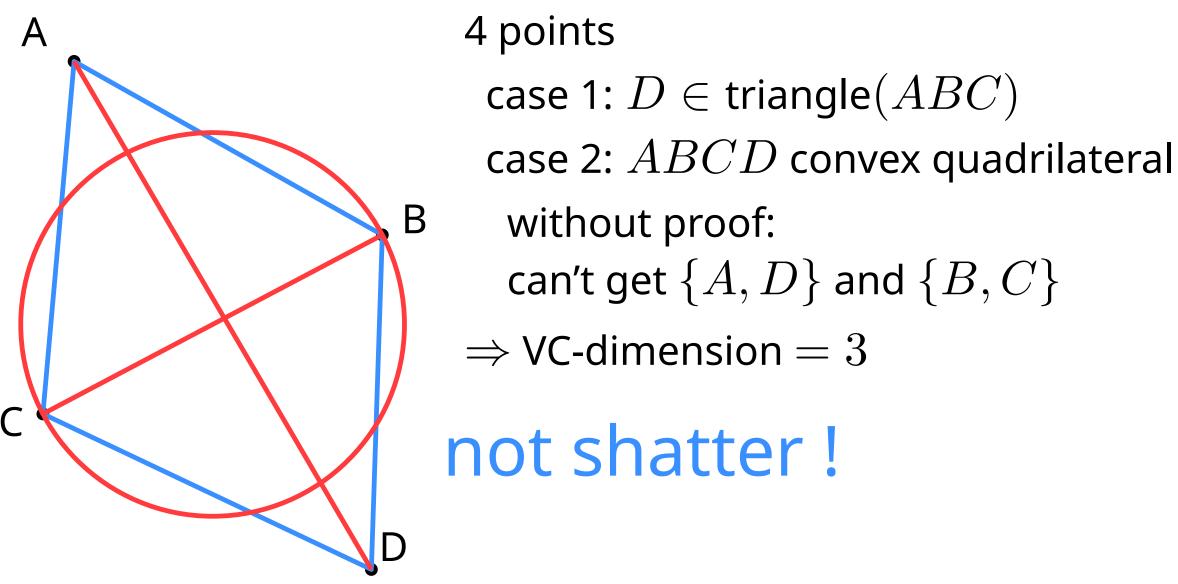
4 points case 1: $D \in triangle(ABC)$









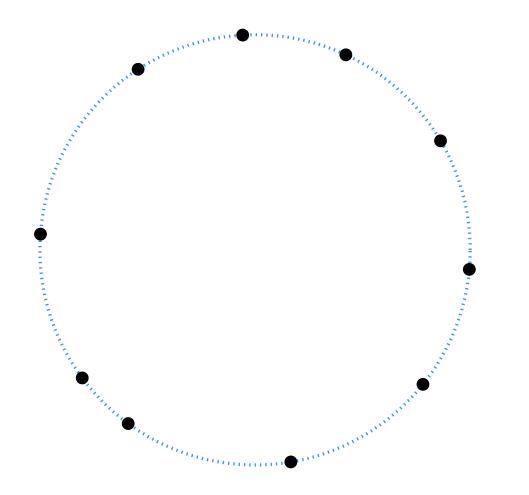


Example: convex sets as ranges

range space $(\mathbb{R}^2, \mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

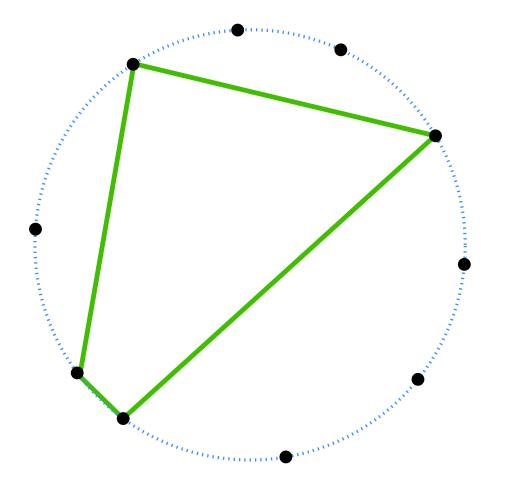
Example: convex sets as ranges

range space $(\mathbb{R}^2, \mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets



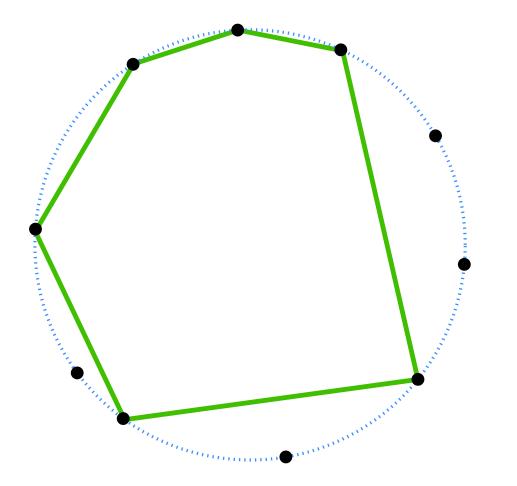
Example: convex sets as ranges

range space $(\mathbb{R}^2, \mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets



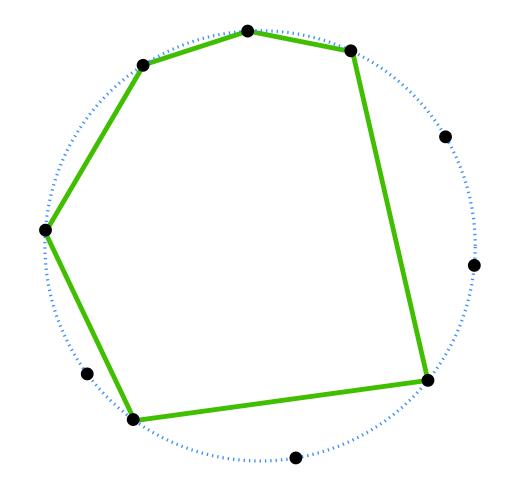
Example: convex sets as ranges

range space $(\mathbb{R}^2, \mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets



Example: convex sets as ranges

range space $(\mathbb{R}^2, \mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

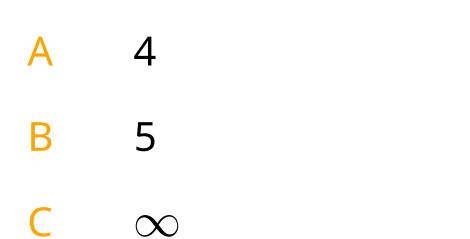


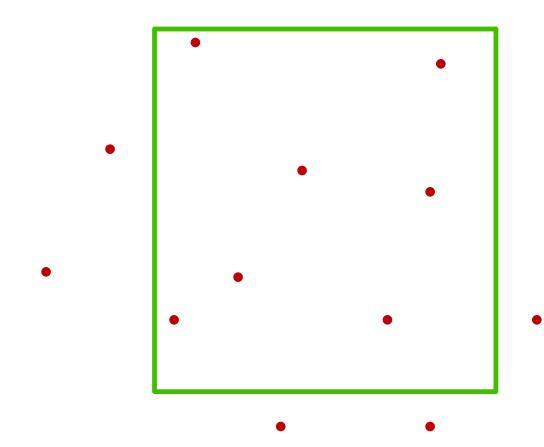
$\Rightarrow \text{VC-dimension} = \infty$

Quiz

range space $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles

What is its VC-dimension?

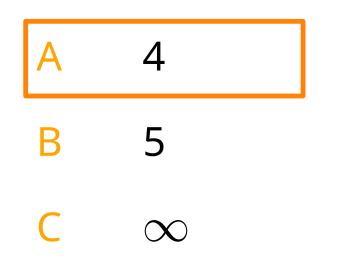


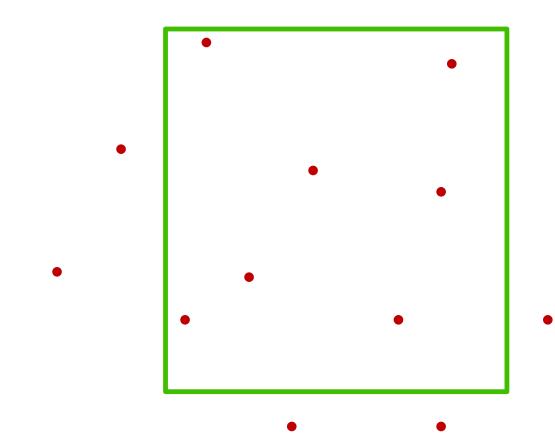


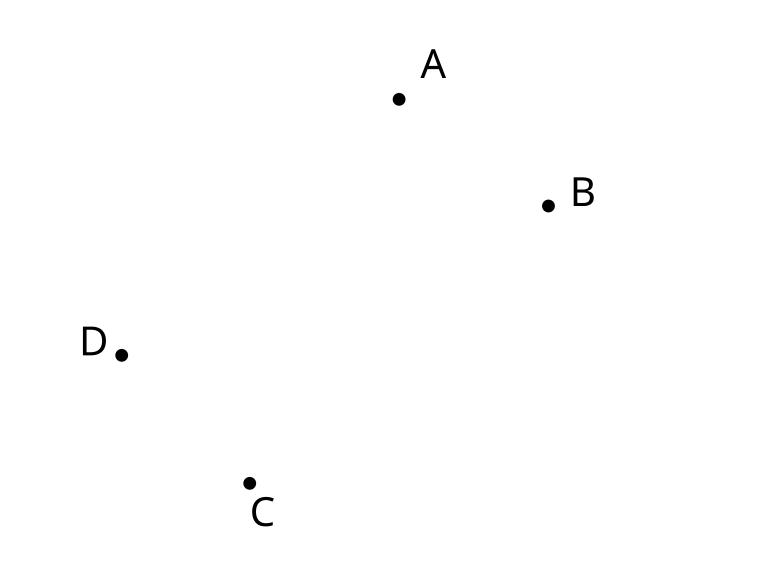
Quiz

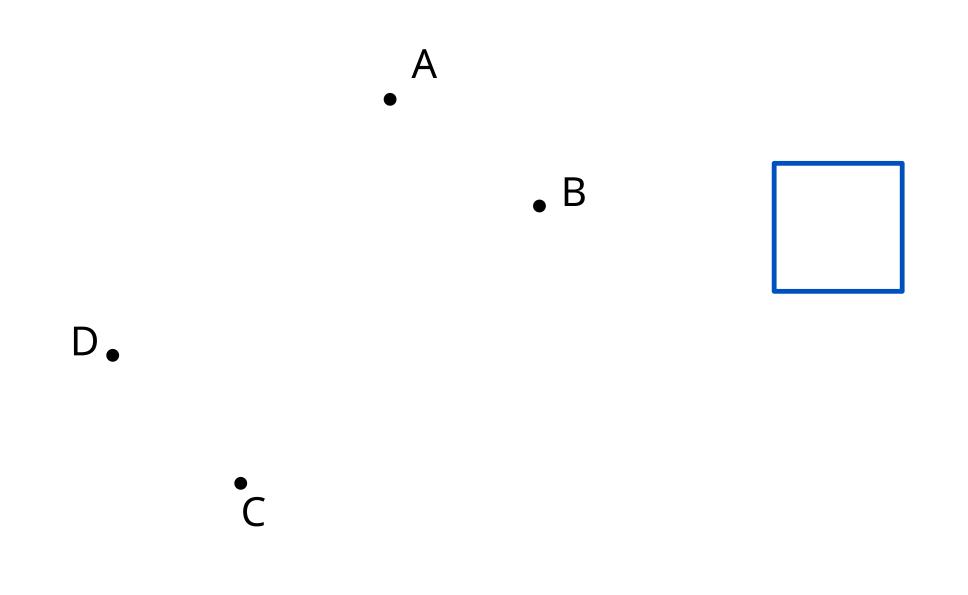
range space $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles

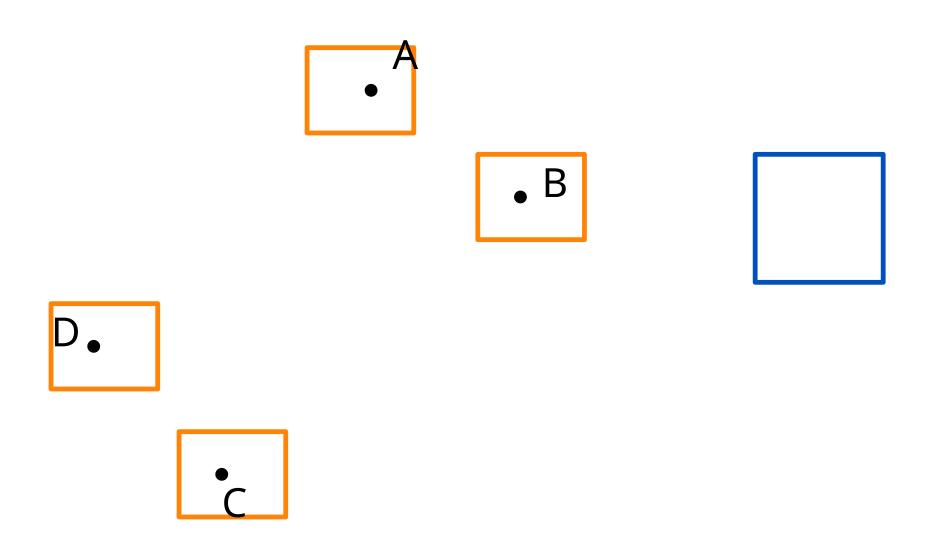
What is its VC-dimension?

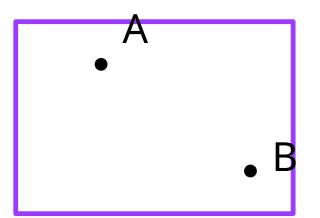


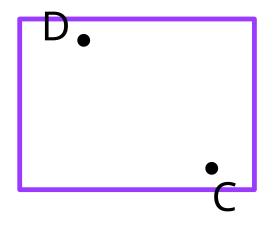


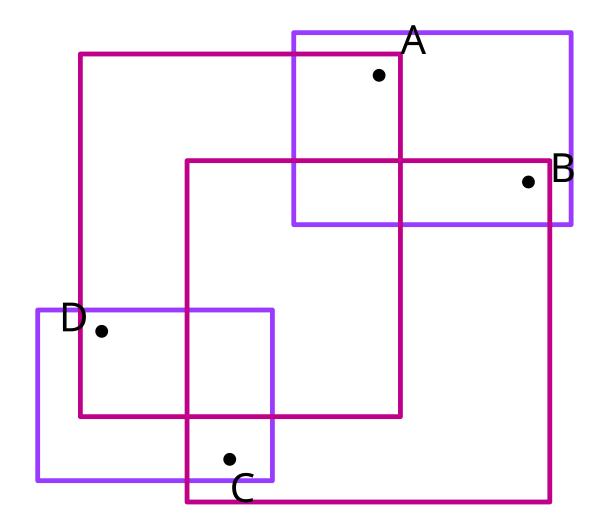


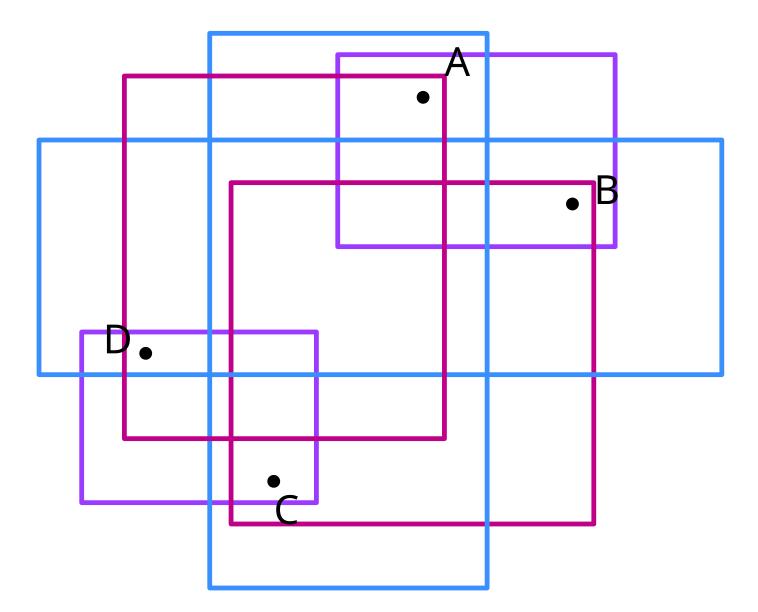


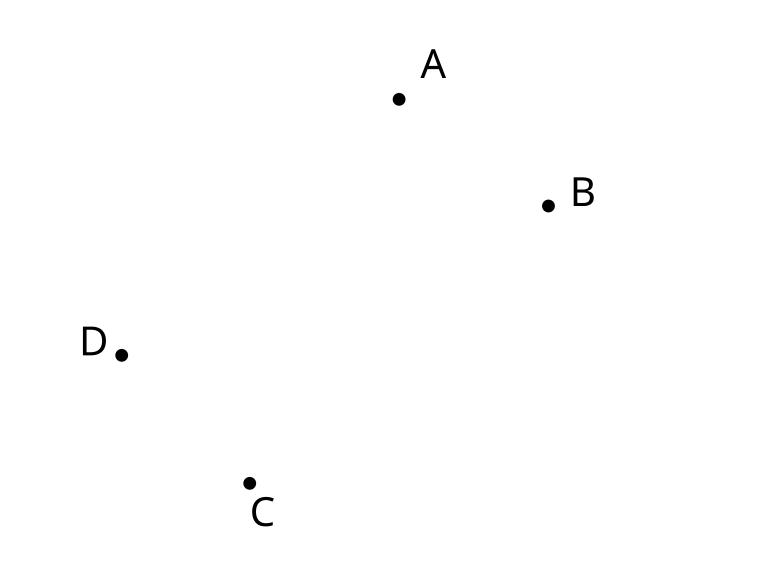


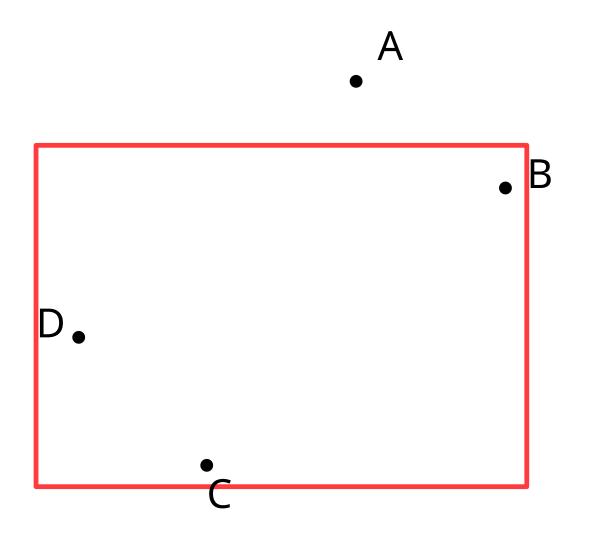


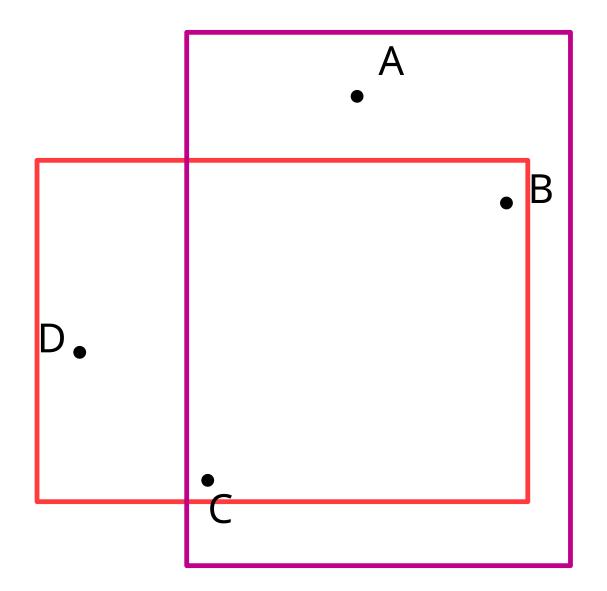


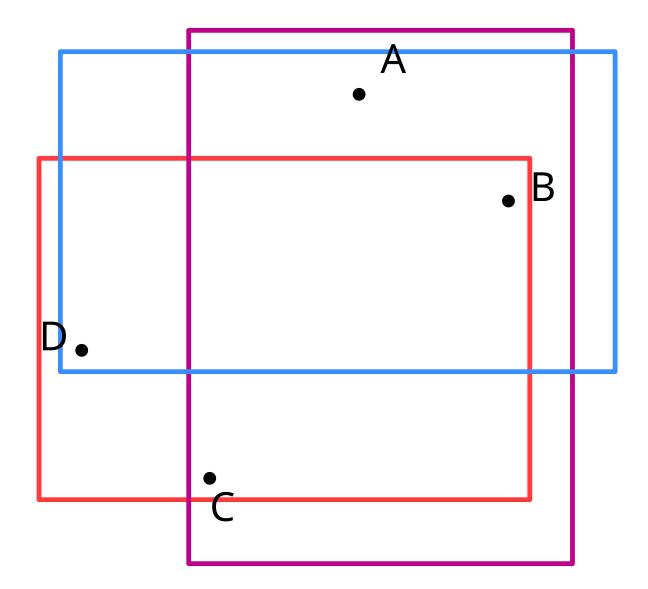


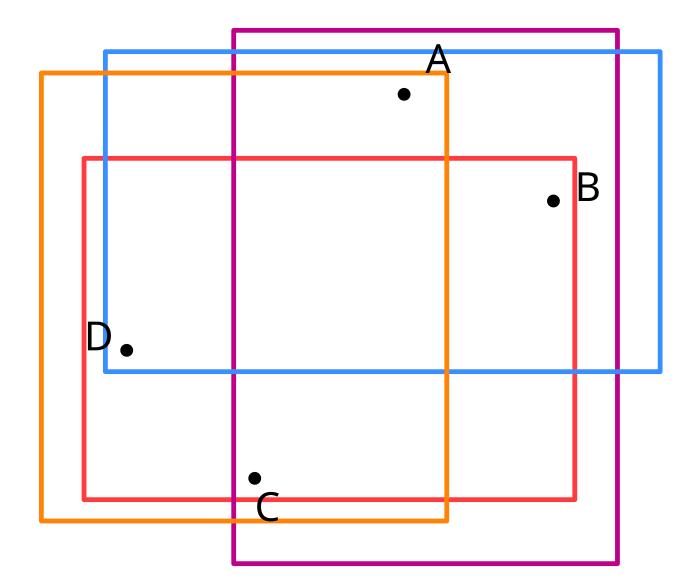


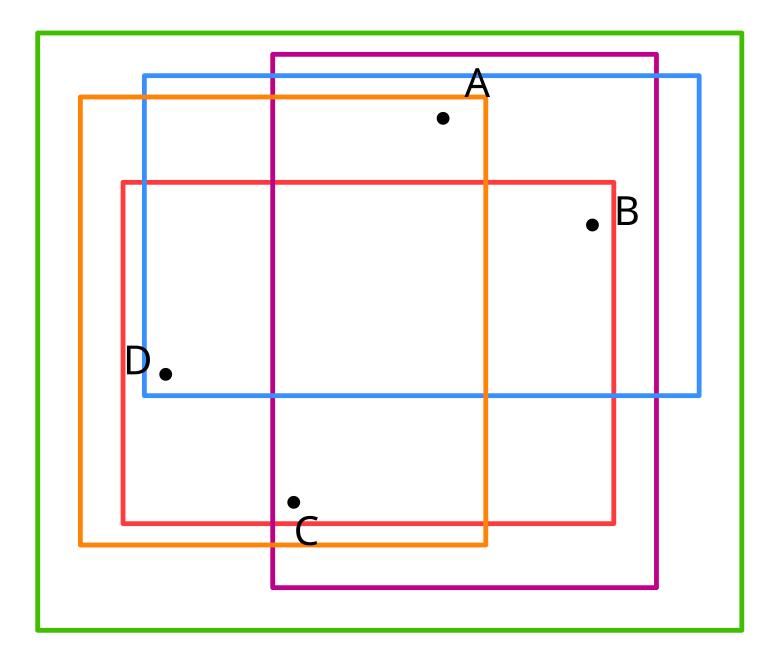


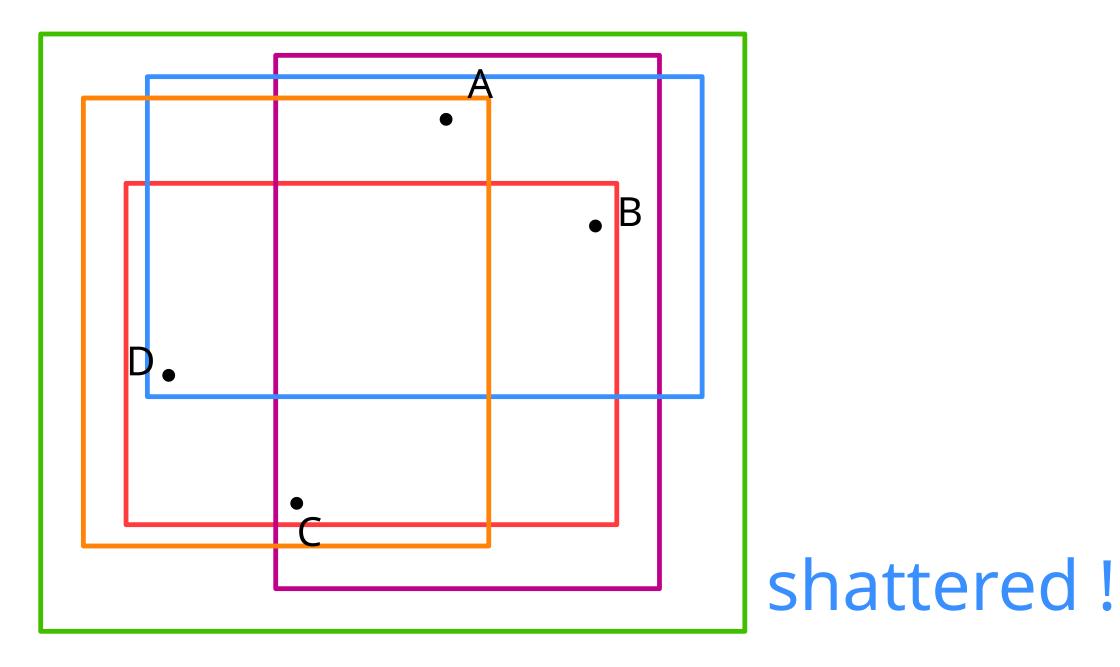


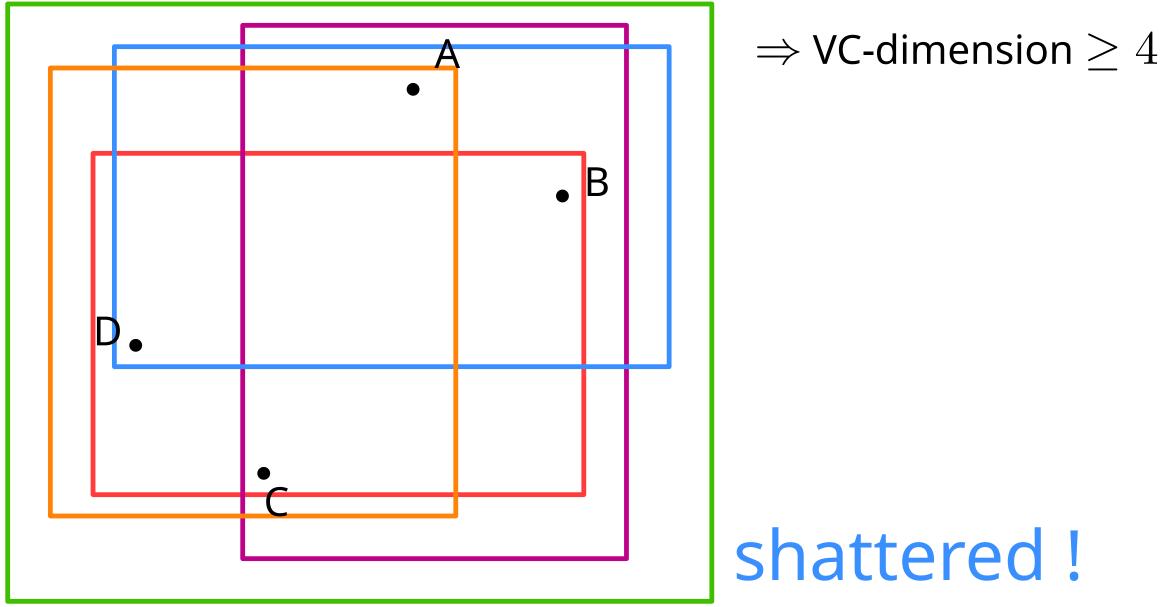




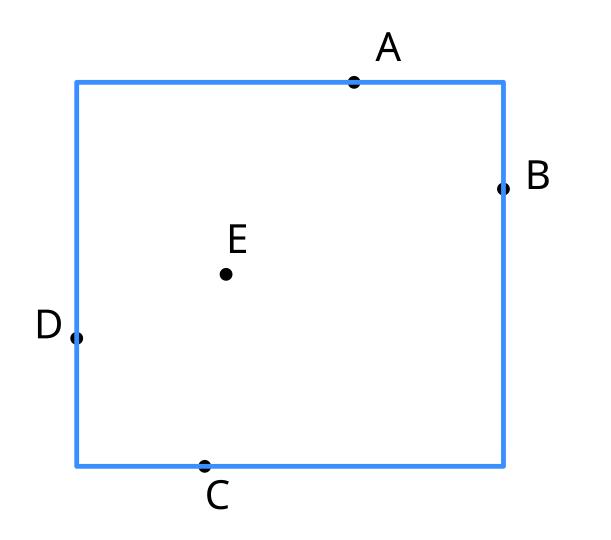




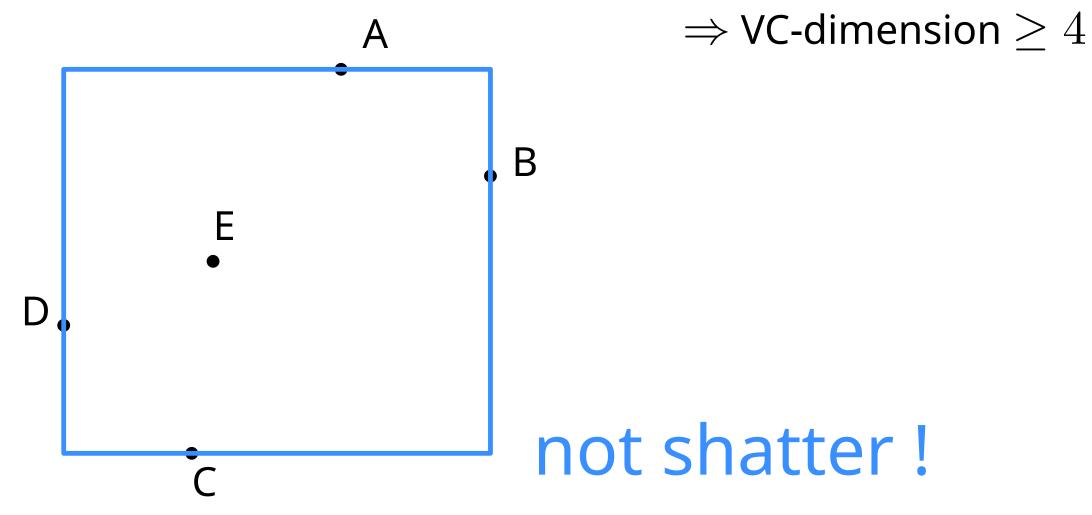


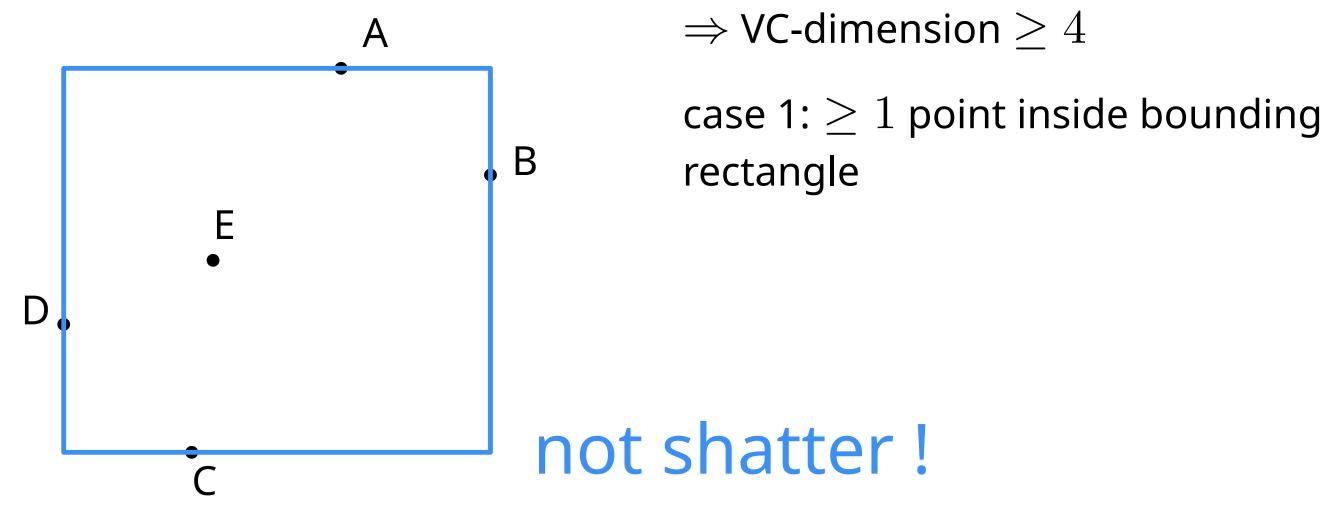


range space $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles

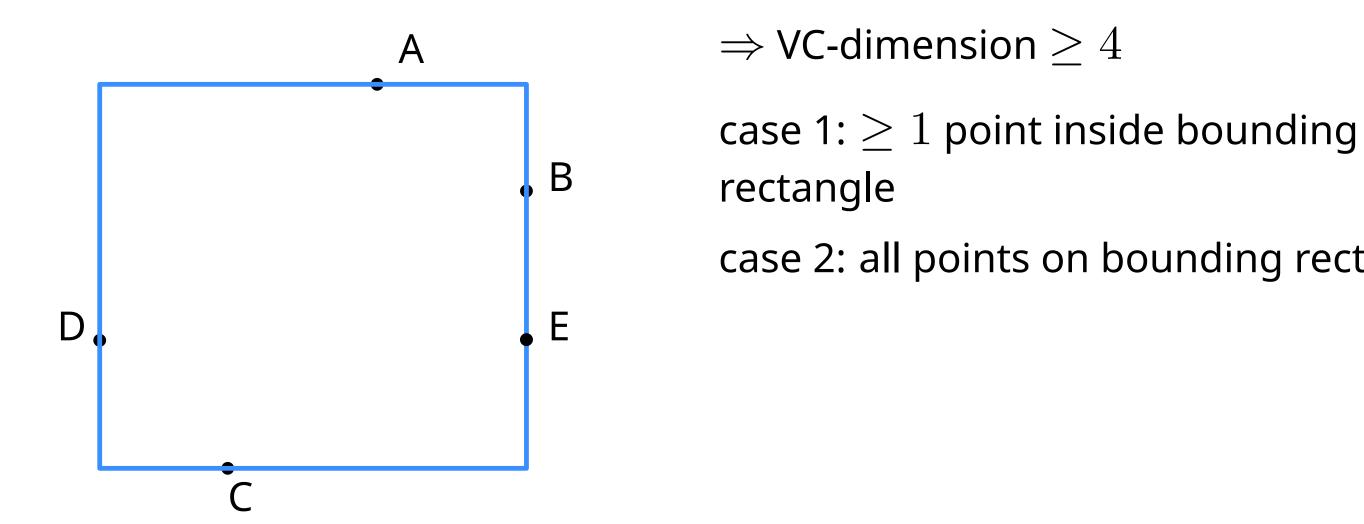


\Rightarrow VC-dimension ≥ 4



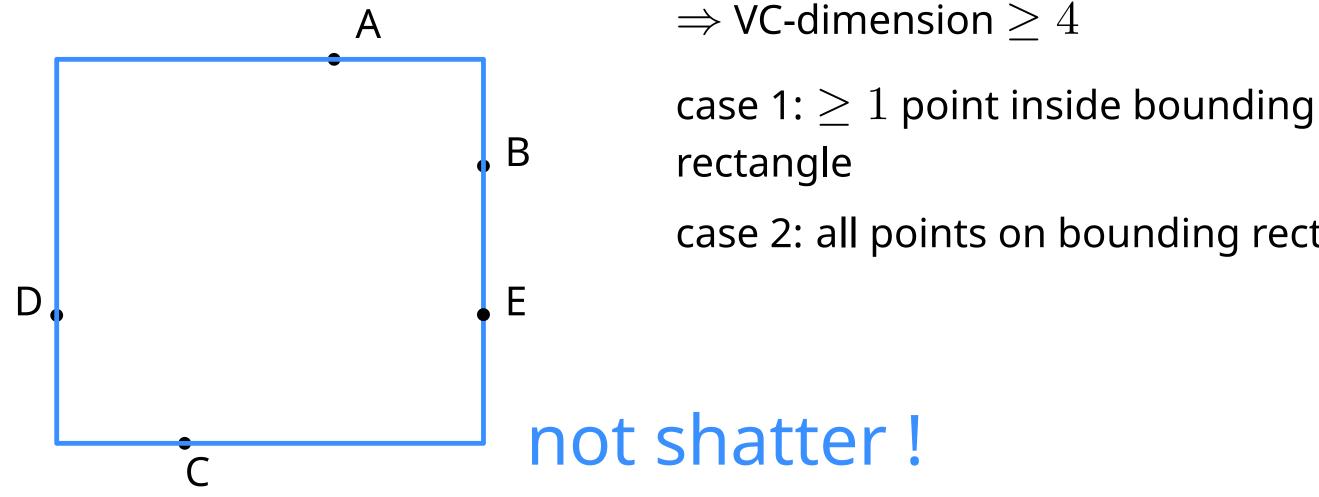


range space $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles



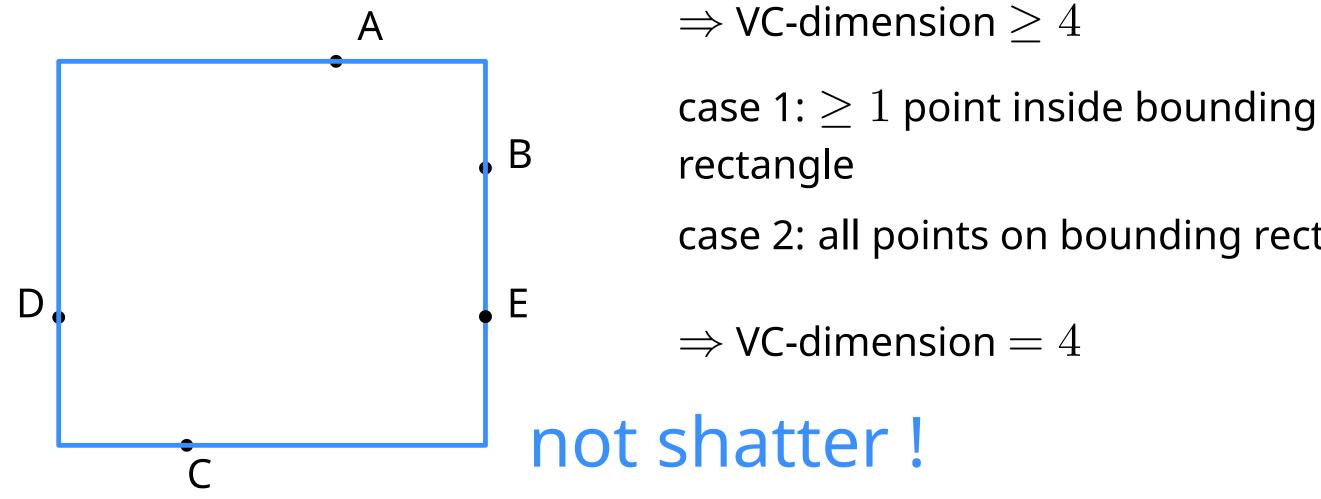
case 2: all points on bounding rectangle

range space $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles



case 2: all points on bounding rectangle

range space $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles



case 2: all points on bounding rectangle

Summary: VC-dimension of geometric range spaces

range space

(\mathbb{R},\mathcal{I}), with $\mathcal{I}=$ set of closed intervals

 $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

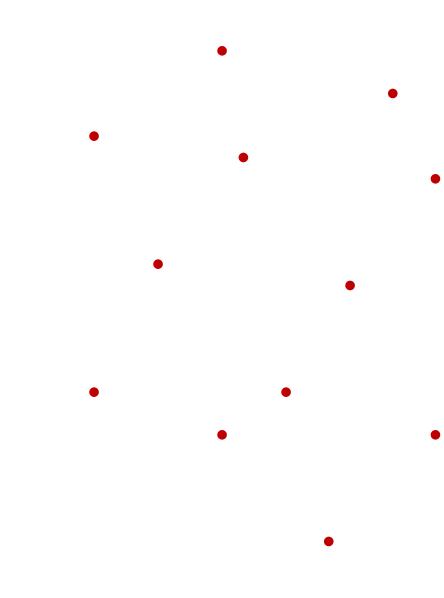
 $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles

 $(\mathbb{R}^2,\mathcal{GR})$, with $\mathcal{GR}=$ set of arbitrary oriented rectangles

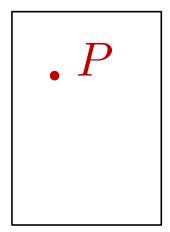
 $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

- **VC-dimension**
- 2 3
- 4
- $? \geq 4$
- ∞

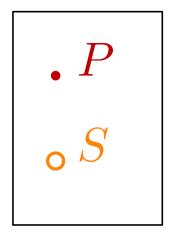
ε -samples

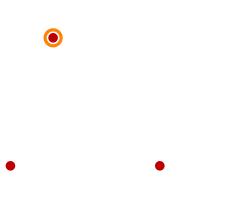


Measure:
$$\mu(r) = rac{|r \cap P|}{|P|}$$



Estimate:
$$\hat{\mu}(r) = \frac{|r||S|}{|S|}$$



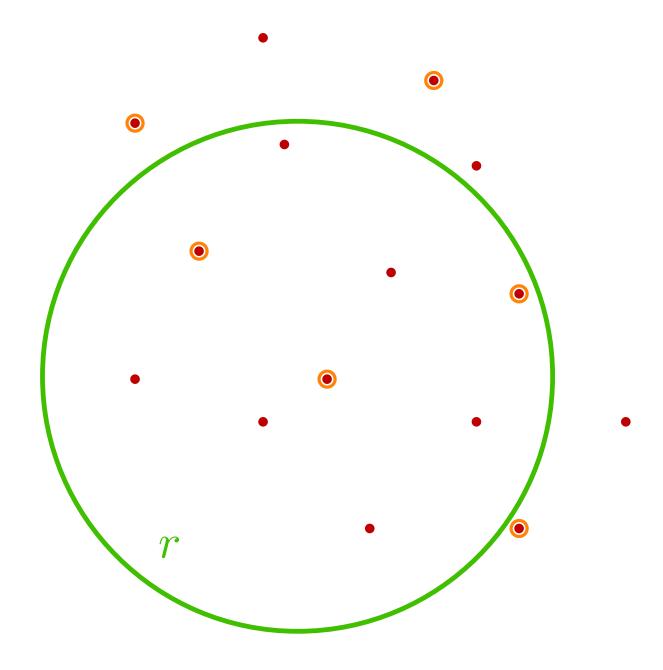


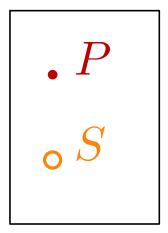
Measure:
$$\mu(r) = \frac{|r \cap P|}{|P|}$$

 $\mu(Q) = \frac{9}{15} = 0.6$

Estimate:
$$\hat{\mu}(r) = \frac{|r \cap S|}{|S|}$$

 $\hat{\mu}(Q) = \frac{3}{6} = 0.5$

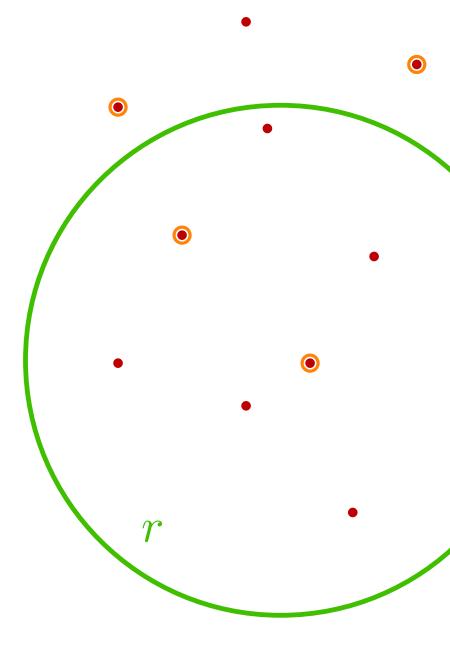


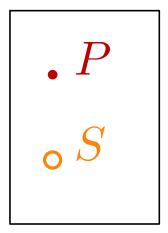


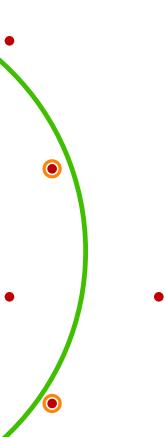
Measure:
$$\mu(r) = \frac{|r \cap P|}{|P|}$$

 $\mu(Q) = \frac{9}{15} = 0.6$
Estimate: $\hat{\mu}(r) = \frac{|r \cap S|}{|S|}$
 $\hat{\mu}(Q) = \frac{3}{6} = 0.5$

Good Sample *S*: for all $r \in \mathcal{R}$, $\hat{\mu}(r) \approx \mu(r)$

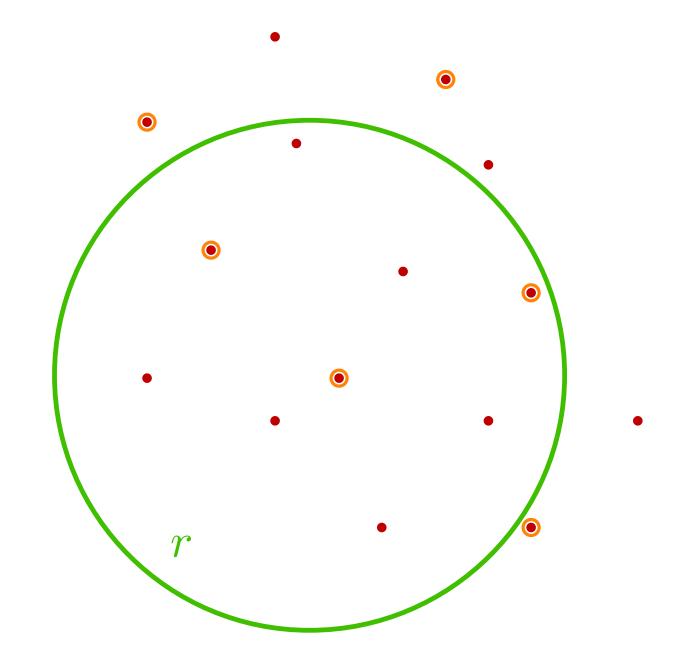


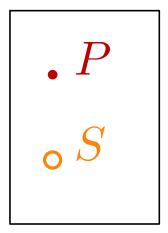




ε -samples

 $\varepsilon\text{-sample }S\text{:}$ for all $r \in \mathcal{R}$ and any $0 \le \varepsilon \le 1$ $|\mu(r) - \hat{\mu}(r)| \le \varepsilon$



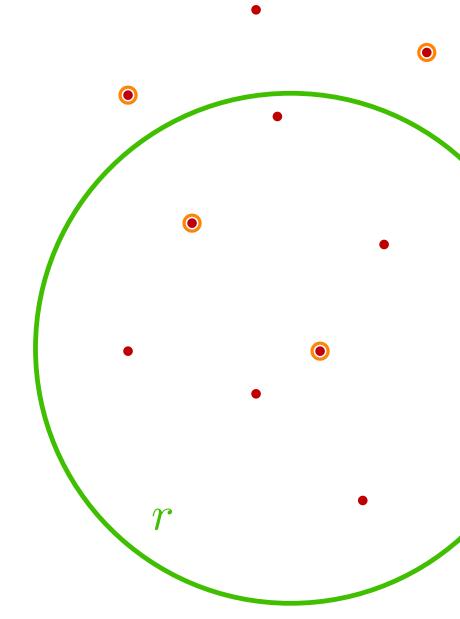


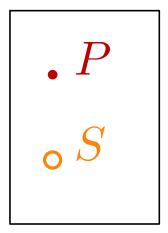
ε -samples

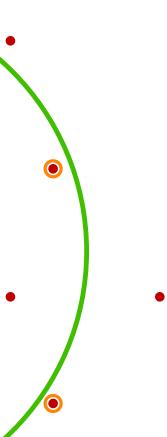
 $\varepsilon\text{-sample }S\text{:}$ for all $r \in \mathcal{R}$ and any $0 \le \varepsilon \le 1$ $|\mu(r) - \hat{\mu}(r)| \le \varepsilon$

$$|\mu(\mathbf{r}) - \hat{\mu}(\mathbf{r})| = |9/15 - 3/6$$

= 0.1



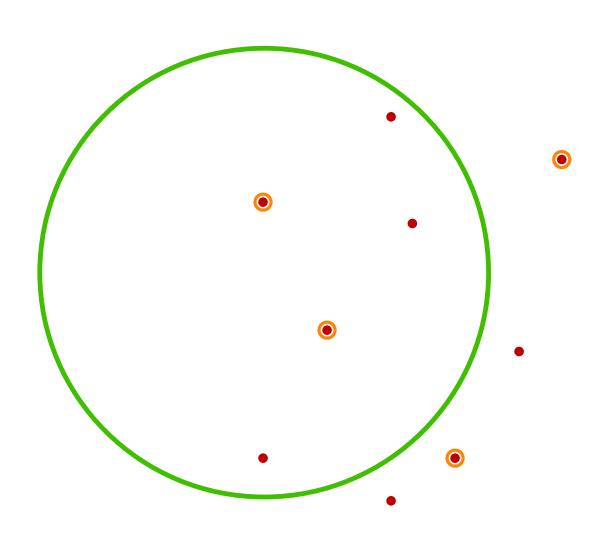


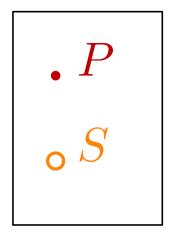


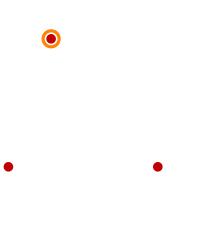
Quiz

$$|\mu(\mathbf{r}) - \hat{\mu}(\mathbf{r})| = \dots$$
?

- B 0.1
- C 0.2
- D none of the above

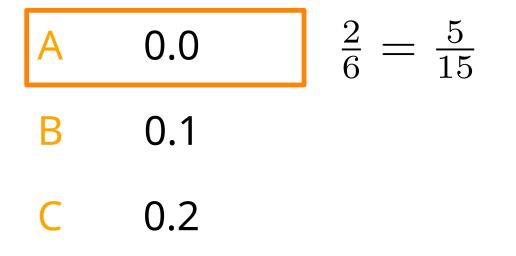




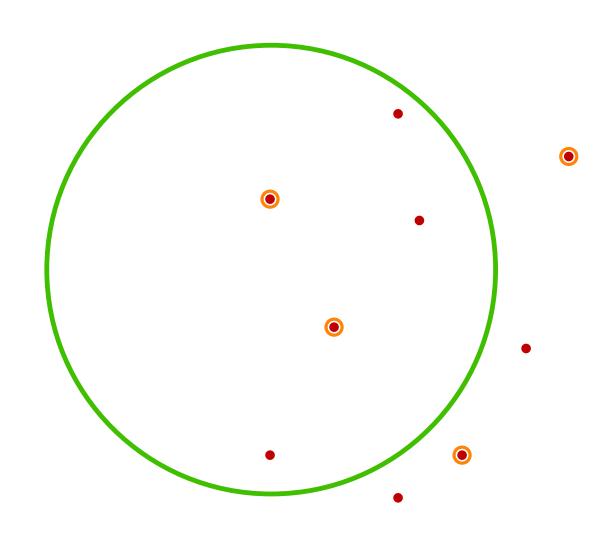


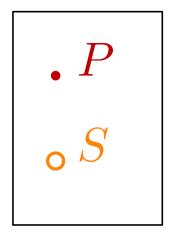
Quiz

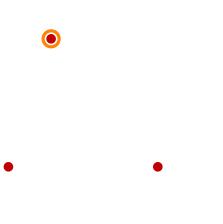
$$|\mu(\mathbf{r}) - \hat{\mu}(\mathbf{r})| = \dots$$
?



D none of the above







ε -sample theorem

Let $\varphi, \varepsilon > 0$ be parameters and (X, \mathcal{R}) be a range space with finite X and VC-dimension δ . A sample of size

$$O\left(\frac{1}{\varepsilon^2}\left(\delta + \log\varphi^{-1}\right)\right)$$

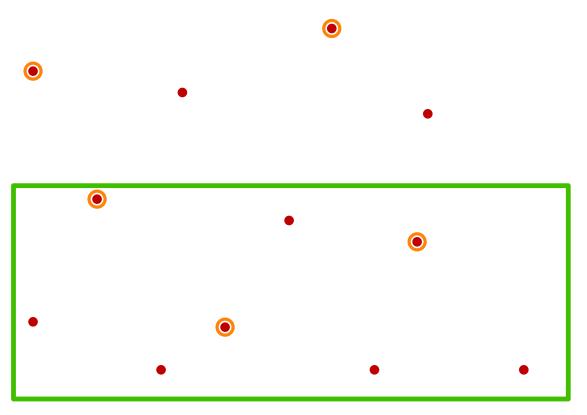
is an ε -sample for (X, \mathcal{R}) with probability $\geq 1 - \varphi$ (we skip the proof)

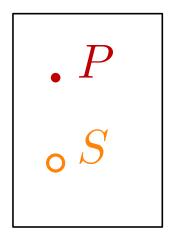
Given P,

how many points do we need to sample ($S \subset P$), such that

2. for any query rectangle r $\left|\frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|}\right| \le 0.25$?

with probability 0.999



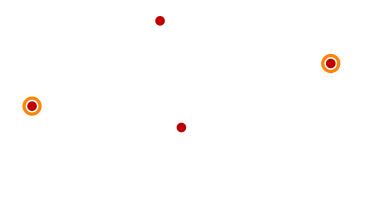


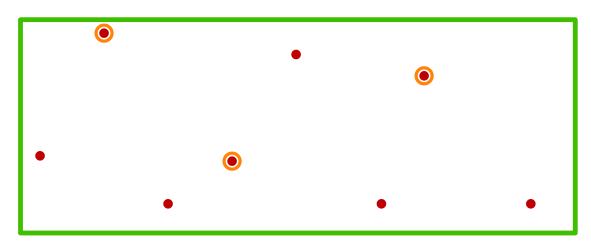
Given P,

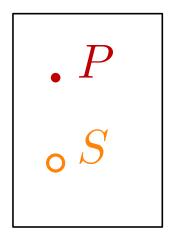
how many points do we need to sample ($S \subset P$), such that

2. for any query rectangle r $\left|\frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|}\right| \le 0.25 = \varepsilon$?

with probability 0.999



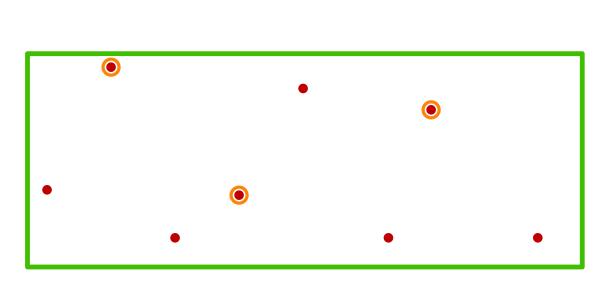




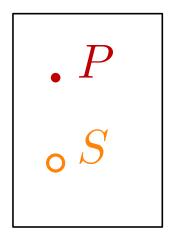
Given P,

how many points do we need to sample ($S \subset P$), such that

2. for any query rectangle r $\left|\frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|}\right| \le 0.25 = \varepsilon$? with probability 0.999 = $1 - \varphi$



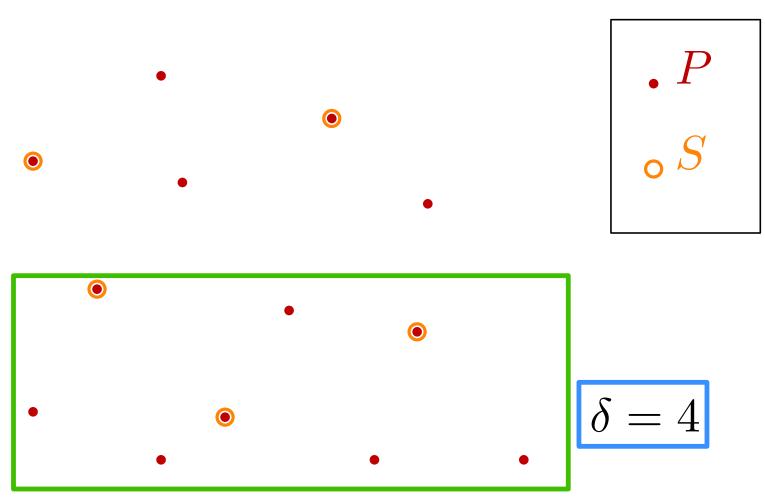
 \bigcirc



Given P,

how many points do we need to sample ($S \subset P$), such that

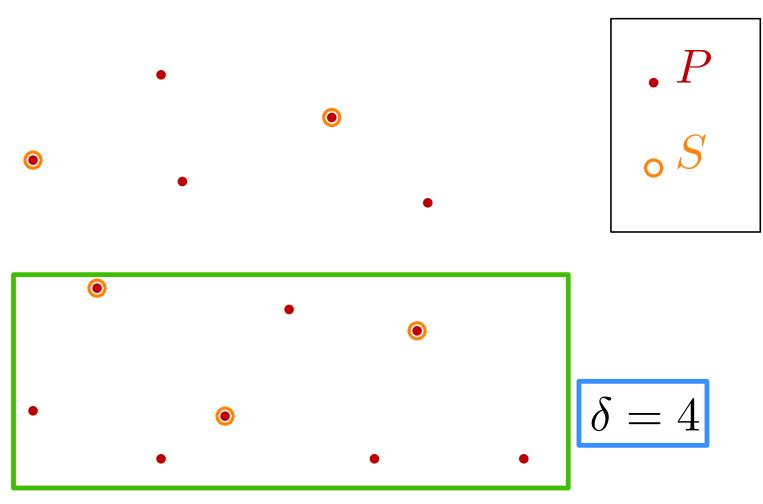
2. for any query rectangle r $\left|\frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|}\right| \le 0.25 = \varepsilon$? with probability 0.999 = $1 - \varphi$



Given P,

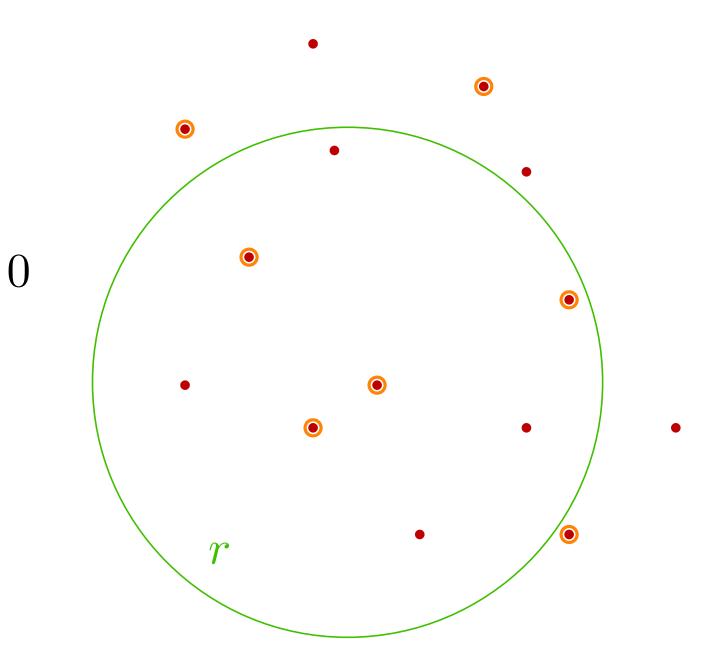
how many points do we need to sample ($S \subset P$), such that

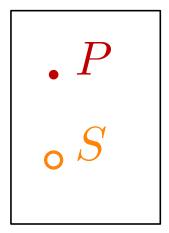
2. for any query rectangle r $\left|\frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|}\right| \le 0.25 = \varepsilon$? with probability 0.999 = $1 - \varphi$



answer: $O\left(\frac{1}{\varepsilon^2}\left(4 + \log \phi^- 1\right)\right)$, in particular O(1) for given ε, φ independent of n

 $\begin{array}{l} \varepsilon \text{-sample } S\text{:} \\ \text{for all } r \in \mathcal{R} \text{ and any} \\ 0 \leq \varepsilon \leq 1 \\ \text{if } \mu(r) \geq \varepsilon \text{ and} \\ |\mu(r) - \hat{\mu}(r)| \leq \varepsilon \text{ then } \hat{\mu}(r) > 0 \end{array}$

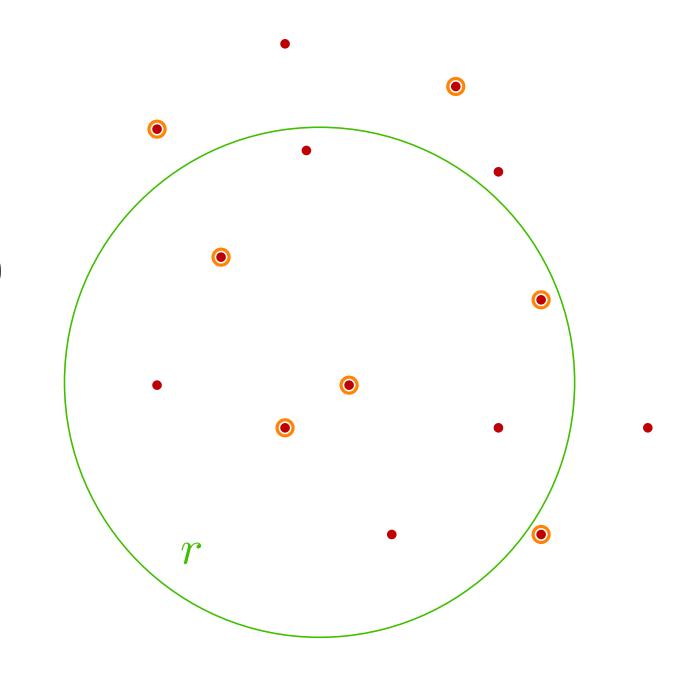


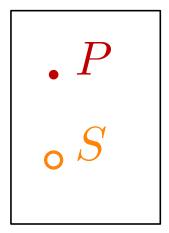


$$\begin{split} \varepsilon\text{-sample }S\text{:}\\ \text{for all }r\in\mathcal{R}\text{ and any}\\ 0\leq\varepsilon\leq1\\ \text{if }\mu(r)\geq\varepsilon\text{ and}\\ |\mu(r)-\hat{\mu}(r)|\leq\varepsilon\text{ then }\hat{\mu}(r)>0 \end{split}$$

weaker notion:

 $\begin{array}{l} \varepsilon \text{-net } S \text{:} \\ \text{for all } r \in \mathcal{R} \text{ and any} \\ 0 \leq \varepsilon \leq 1 \\ \text{if } \mu(r) \geq \varepsilon \text{ then } r \text{ contains} \\ \text{at least one point of } S \end{array}$

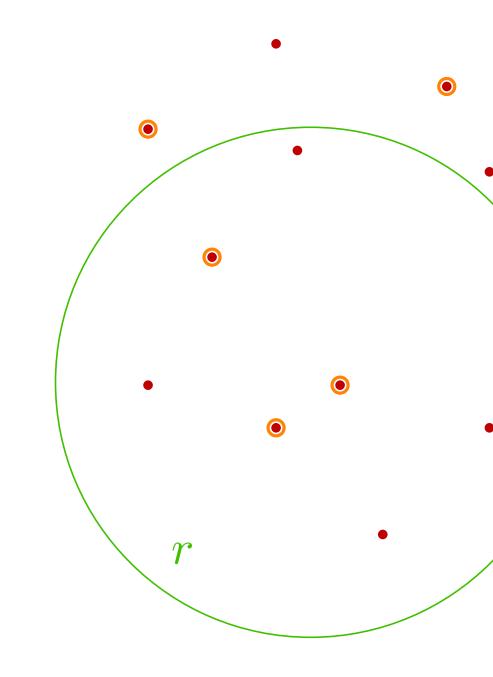


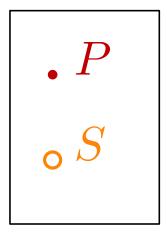


$$\begin{split} \varepsilon\text{-sample }S\text{:}\\ \text{for all }r\in\mathcal{R}\text{ and any}\\ 0\leq\varepsilon\leq1\\ \text{if }\mu(r)\geq\varepsilon\text{ and}\\ |\mu(r)-\hat{\mu}(r)|\leq\varepsilon\text{ then }\hat{\mu}(r)>0 \end{split}$$

weaker notion:

 $\begin{array}{l} \varepsilon \text{-net } S \text{:} \\ \text{for all } r \in \mathcal{R} \text{ and any} \\ 0 \leq \varepsilon \leq 1 \\ \text{if } \mu(r) \geq \varepsilon \text{ then } r \text{ contains} \\ \text{at least one point of } S \end{array}$





Question: ε -net for which ε ?

ε -Net Theorem

Let $\varphi, \varepsilon > 0$ be parameters and (X, \mathcal{R}) be a range space with finite X and VC-dimension δ . A sample obtained by m random draws from X with

$$m \ge \max\left(\frac{4}{\varepsilon}\log\frac{4}{\varphi}, \frac{8\delta}{\varepsilon}\log\frac{16}{\varepsilon}\right)$$

is an ε -net for (X, \mathcal{R}) with probability $\geq 1 - \varphi$ (we skip the proof, but there is a proof sketch in book)

ε -Net Theorem

Let $\varphi, \varepsilon > 0$ be parameters and (X, \mathcal{R}) be a range space with finite X and VC-dimension δ . A sample obtained by m random draws from X with

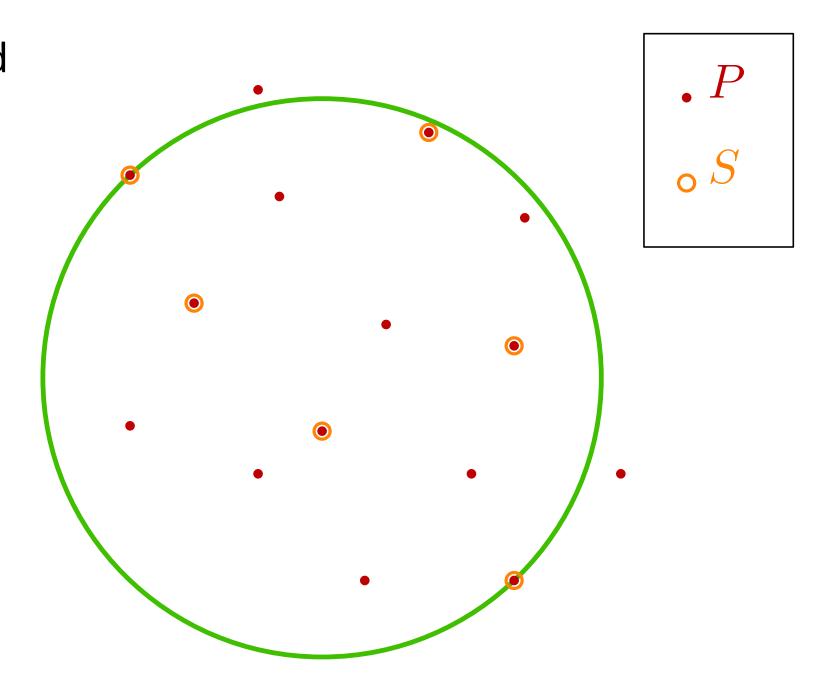
$$m \ge \max\left(\frac{4}{\varepsilon}\log\frac{4}{\varphi}, \frac{8\delta}{\varepsilon}\log\frac{16}{\varepsilon}\right)$$

is an ε -net for (X, \mathcal{R}) with probability $\geq 1 - \varphi$ (we skip the proof, but there is a proof sketch in book)

$$\begin{array}{ll} \text{in short:} & \varepsilon\text{-sample} & \varepsilon\text{-net} \\ & O\left(\frac{\delta}{\varepsilon^2}\right) & O\left(\frac{\delta}{\varepsilon}\log\frac{1}{\varepsilon}\right) \end{array}$$

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in P?

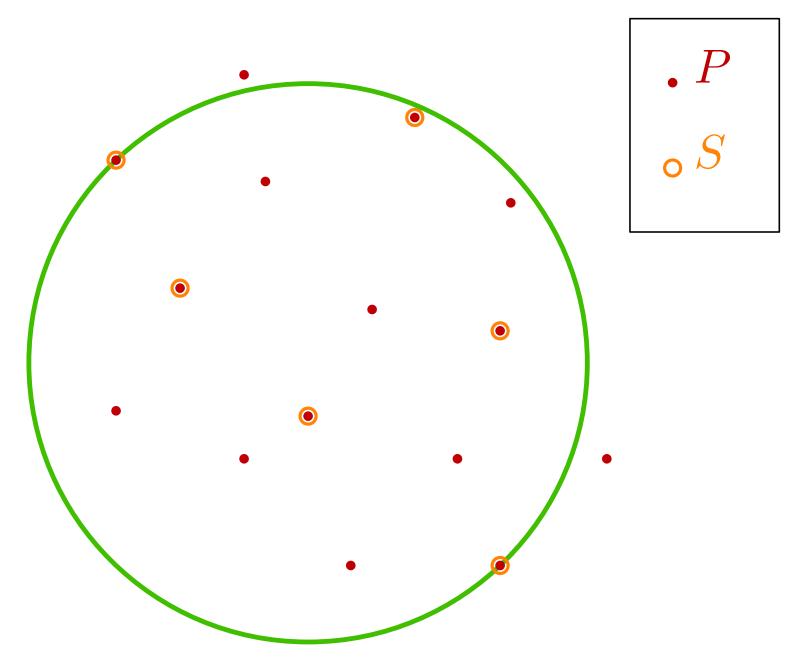
with probability 0.999



Given P, how many points do we need to sample ($S \subset P$), such that

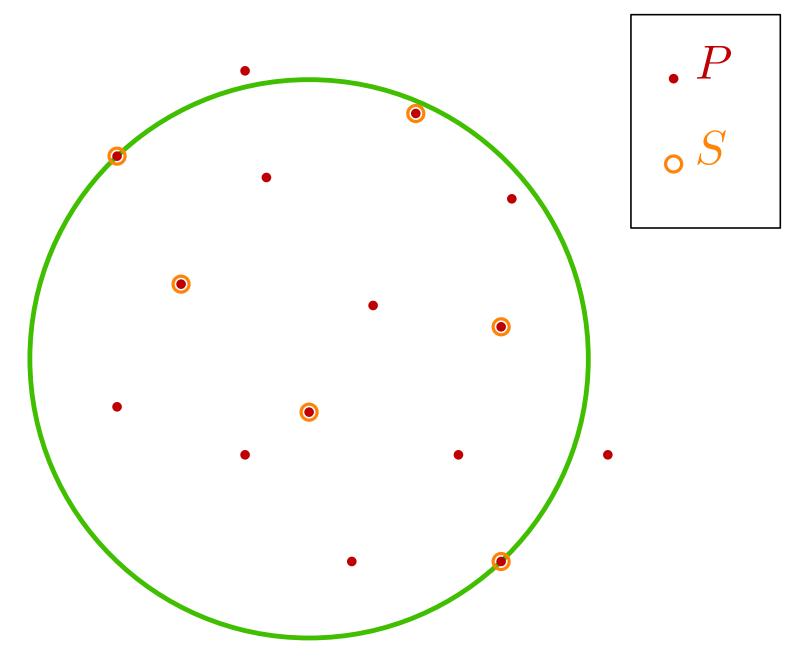
the smallest enclosing disk contains 90% of the points in P?

with probability 0.999 $= 1 - \varphi$



Given P, how many points do we need to sample ($S \subset P$), such that

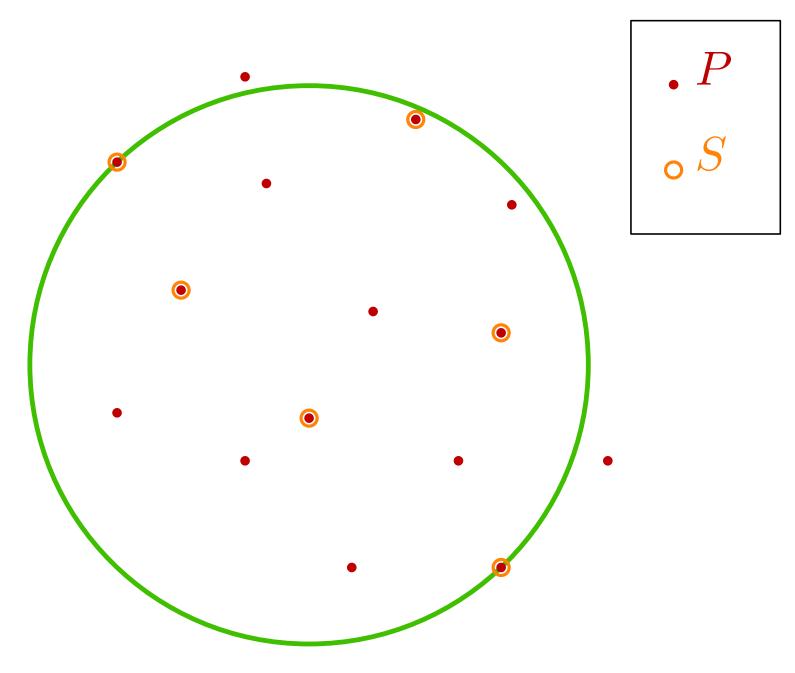
the smallest enclosing disk contains 90% of the points in P? $\varepsilon = 0.1$ with probability 0.999 $= 1 - \varphi$



Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? $\varepsilon = 0.1$ with probability 0.999 $= 1 - \varphi$

Question: Which range space?

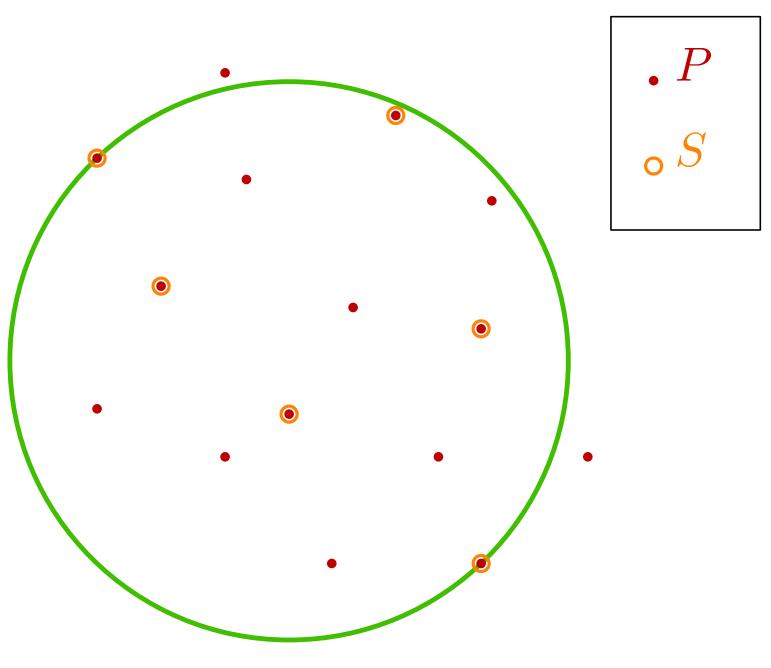


Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? $\varepsilon = 0.1$ with probability 0.999 $= 1 - \varphi$

Question: Which range space?

If 10% of P outside a circle, then there should be a point of S outside the circle

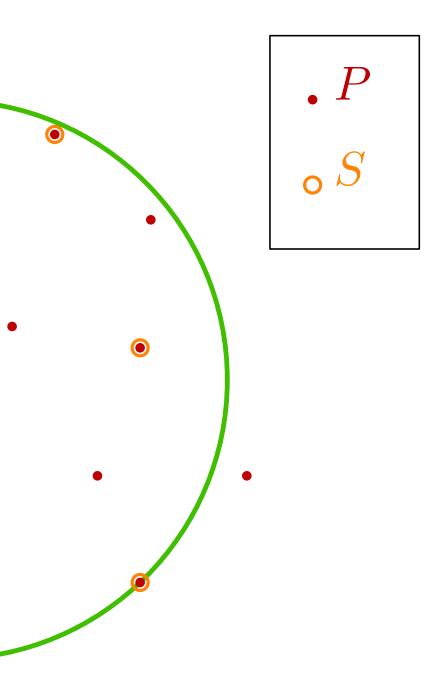


Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? = 0.1 with probability 0.999 $= 1 - \varphi$

Question: Which range space?

If 10% of P outside a circle, then there should be a point of S outside the circle range space: $(\mathbb{R}^2, \mathcal{D}^c)$, with \mathcal{D}^c the set of complements of disks.



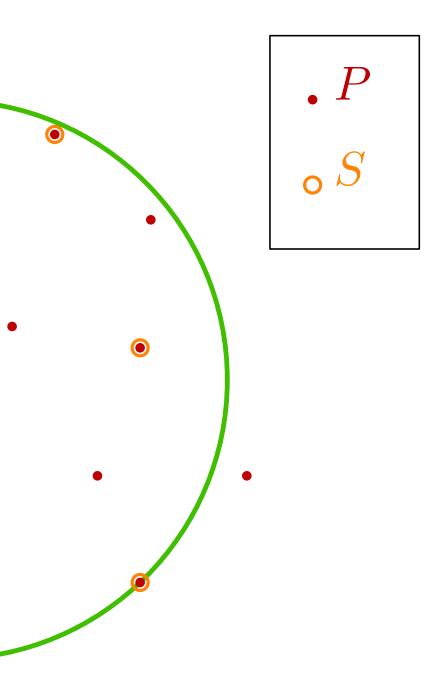
Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? $\varepsilon = 0.1$ with probability 0.999 $= 1 - \varphi$

Question: Which range space?

If 10% of P outside a circle, then there should be a point of S outside the circle range space: $(\mathbb{R}^2, \mathcal{D}^c)$, with \mathcal{D}^c the set of complements of disks.

range space and its complement have same VC-dimension



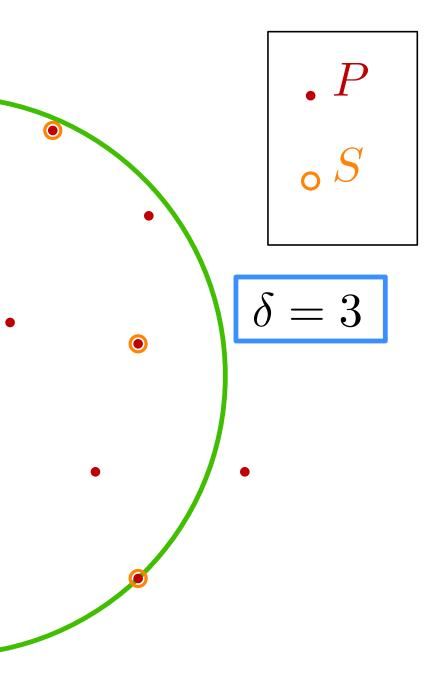
Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? $\varepsilon = 0.1$ with probability 0.999 $= 1 - \varphi$

Question: Which range space?

If 10% of P outside a circle, then there should be a point of S outside the circle range space: $(\mathbb{R}^2, \mathcal{D}^c)$, with \mathcal{D}^c the set of complements of disks.

range space and its complement have same VC-dimension



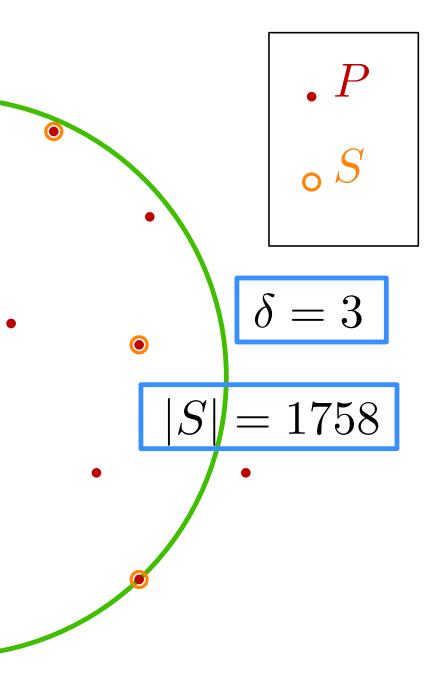
Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? $\varepsilon = 0.1$ with probability 0.999 $= 1 - \varphi$

Question: Which range space?

If 10% of P outside a circle, then there should be a point of S outside the circle range space: $(\mathbb{R}^2, \mathcal{D}^c)$, with \mathcal{D}^c the set of complements of disks.

range space and its complement have same VC-dimension



ε -sample theorem, revisited

 ε -sample (and -net) theorem use random sample.

ε -sample theorem, revisited

 ε -sample (and -net) theorem use random sample.

It is also possible to construct an ε -sample of size $O(\frac{\log |\mathcal{R}|}{\varepsilon^2})$ deterministically.

$\varepsilon\textsc{-sample}$ theorem, revisited

 ε -sample (and -net) theorem use random sample.

It is also possible to construct an ε -sample of size $O(\frac{\log |\mathcal{R}|}{\varepsilon^2})$ deterministically.

Question: How large is $\log |\mathcal{R}|$?

Sauer's Lemma bounding $|\mathcal{R}|$

Given $0 \le d \le n$, define $\Phi_d(n)$ to be the number of subsets of size at most dover a set of size *n*.

Given $0 \le d \le n$, define $\Phi_d(n)$ to be the number of subsets of size at most dover a set of size *n*.

$$\Phi_d(n) = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{d} = \sum_{i=0}^d$$

Given $0 \le d \le n$, define $\Phi_d(n)$ to be the number of subsets of size at most dover a set of size *n*.

$$\Phi_d(n) = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{d} = \sum_{i=0}^d$$

 $\overset{d}{\underset{i=0}{\overset{n}{i}}} \binom{n}{i} \le n^d$

Given $0 \le d \le n$, define $\Phi_d(n)$ to be the number of subsets of size at most dover a set of size *n*.

$$\Phi_d(n) = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{d} = \sum_{i=0}^d$$

This function satisfies the following recurrence

$$\Phi_d(n) = \Phi_d(n-1) + \Phi_{d-1}(n-1)$$

 $\binom{n}{i} \leq n^d$

Given $0 \le d \le n$, define $\Phi_d(n)$ to be the number of subsets of size at most dover a set of size *n*.

$$\Phi_d(n) = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{d} = \sum_{i=0}^d$$

This function satisfies the following recurrence

$$\Phi_d(n) = \Phi_d(n-1) + \Phi_{d-1}(n-1)$$
Intuition: Take element *x*: subsets don't contain *x* or do

 $\binom{n}{i} \leq n^d$

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$.

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$.

proof

Induction on d and n

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$.

proof

Induction on d and n

Base: d = 0 and n = 0 trivially true

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

Step:

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$\mathcal{R} \setminus x = \{Q \setminus \{x\} : Q \in \mathcal{R}\}$$

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

Step:

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$\mathcal{R} \setminus x = \{Q \setminus \{x\} : Q \in \mathcal{R}\}$$
claim: $|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

Step:

$$\begin{array}{l} \mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R} \} \\ \mathcal{R} \setminus x = \{Q \setminus \{x\} : Q \in \mathcal{R} \} \\ \text{claim: } |\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x| \\ \text{ Charge each range of } \mathcal{R} \text{ to corresponding range in } \mathcal{R} \setminus \{x\} \end{array}$$

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

Step:

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$\mathcal{R} \setminus x = \{Q \setminus \{x\} : Q \in \mathcal{R}\}$$
claim: $|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$ Charge each range of \mathcal{R} to corresponding range in $\mathcal{R} \setminus \{x\}$ Range r with $r \cup \{x\} \in \mathcal{R}$ and $r \setminus \{x\} \in \mathcal{R}$ charged twi

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

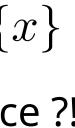
Step:

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$\mathcal{R} \setminus x = \{Q \setminus \{x\} : Q \in \mathcal{R}\}$$
claim: $|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$

Charge each range of \mathcal{R} to corresponding range in $\mathcal{R} \setminus \{x\}$

Range r with $r \cup \{x\} \in \mathcal{R}$ and $r \setminus \{x\} \in \mathcal{R}$ charged twice ?!

These are exactly elements in $\mathcal{R}_x!$



If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

claim: $(X \setminus \{x\}, \mathcal{R}_x)$ has VC-dimension at most d-1

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

claim: $(X \setminus \{x\}, \mathcal{R}_x)$ has VC-dimension at most d-1If $B \subset X \setminus \{x\}$ is shattered by \mathcal{R}_x , then $B \cup \{x\}$ is shattered in \mathcal{R}

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

claim: $(X \setminus \{x\}, \mathcal{R}_x)$ has VC-dimension at most d-1If $B \subset X \setminus \{x\}$ is shattered by \mathcal{R}_x , then $B \cup \{x\}$ is shattered in \mathcal{R}

 $(X \setminus \{x\}, \mathcal{R}_x)$ has smaller VC-dim. than (X, \mathcal{R})

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

claim: $(X \setminus \{x\}, \mathcal{R}_x)$ has VC-dimension at most d-1

Thus, by induction hypothesis:

$$|\mathcal{R}| \le \Phi_{d-1}(n-1) + \Phi_d(n-1)$$

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

claim: $(X \setminus \{x\}, \mathcal{R}_x)$ has VC-dimension at most d-1

Thus, by induction hypothesis:

$$|\mathcal{R}| \le \Phi_{d-1}(n-1) + \Phi_d(n-1) = \Phi_d(n)$$

Quiz

Which bound on $O\left(\frac{\log |\mathcal{R}|}{\varepsilon^2}\right)$ does the previous lemma give for (X, \mathcal{R}) with n = |X| and VC-dimension δ ?

$$A \qquad O\left(\frac{\delta}{\varepsilon^2}\right)$$
$$B \qquad O\left(\frac{\delta \log n}{\varepsilon^2}\right)$$
$$C \qquad O\left(\frac{\delta n}{\varepsilon^2}\right)$$

Quiz

Which bound on $O\left(\frac{\log |\mathcal{R}|}{\varepsilon^2}\right)$ does the previous lemma give for (X, \mathcal{R}) with n = |X| and VC-dimension δ ?

A
$$O\left(\frac{\delta}{\varepsilon^2}\right)$$

B $O\left(\frac{\delta \log n}{\varepsilon^2}\right)$
C $O\left(\frac{\delta n}{\varepsilon^2}\right)$

 $\operatorname{VC-dim} \delta \quad \Rightarrow \quad |\mathcal{R}| \le n^{\delta}$

Quiz

Which bound on $O\left(\frac{\log |\mathcal{R}|}{\varepsilon^2}\right)$ does the previous lemma give for (X, \mathcal{R}) with n = |X| and VC-dimension δ ?

 $\operatorname{VC-dim} \delta \quad \Rightarrow \quad |\mathcal{R}| \leq n^{\delta}$

What does $|\mathcal{R}| = O(n^d)$ imply about the VC-dimension?

Shattering dimension

Shattering Dimension

Given a range space $S = (X, \mathcal{R})$, its shatter function $\pi_S(m)$ is the maximum number of sets that might be created by S when restricted to subsets of size m. Formally,

$$\pi_S(m) = \max_{\substack{B \subset X \\ |B|=m}} |R_{|B}|$$

Shattering Dimension

Given a range space $S = (X, \mathcal{R})$, its shatter function $\pi_S(m)$ is the maximum number of sets that might be created by S when restricted to subsets of size m. Formally,

$$\pi_S(m) = \max_{\substack{B \subset X \\ |B|=m}} |R_{|B}|$$

The shattering dimension of S is the smallest d such that $\pi_S(m) = O(m^d)$, for all m

Shattering Dimension

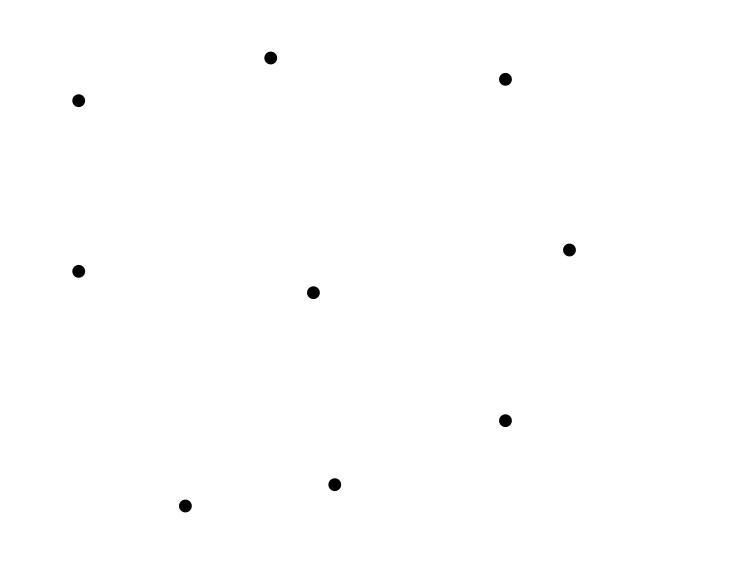
Given a range space $S = (X, \mathcal{R})$, its shatter function $\pi_S(m)$ is the maximum number of sets that might be created by S when restricted to subsets of size m. Formally,

$$\pi_S(m) = \max_{\substack{B \subset X \\ |B|=m}} |R_{|B}|$$

The shattering dimension of S is the smallest d such that $\pi_S(m) = O(m^d)$, for all m

Sauer's lemma: shattering dimension < VC-dimension

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks



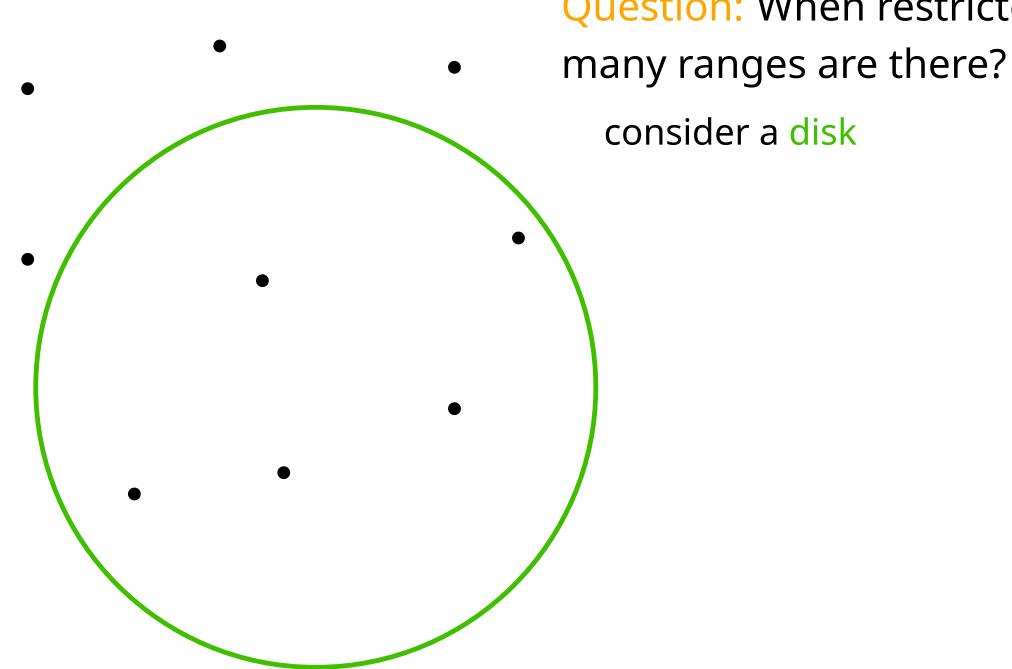
range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks

Question: When restricted to n points, how

• many ranges are there?

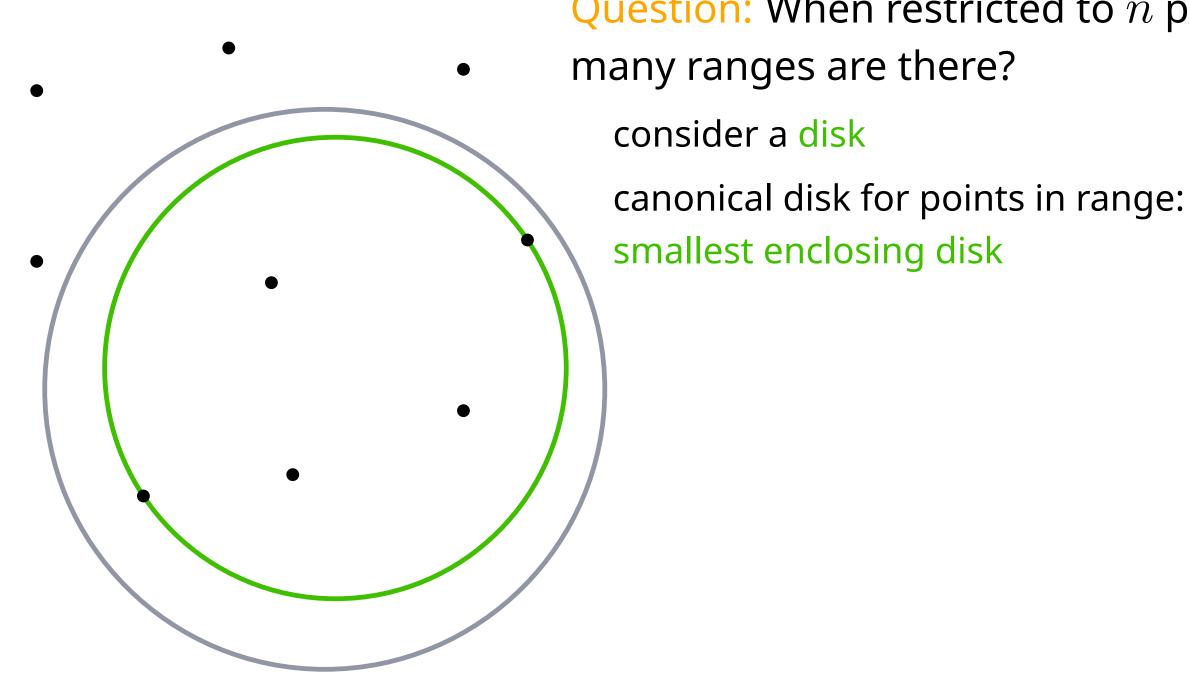
ted to n points, how?

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks



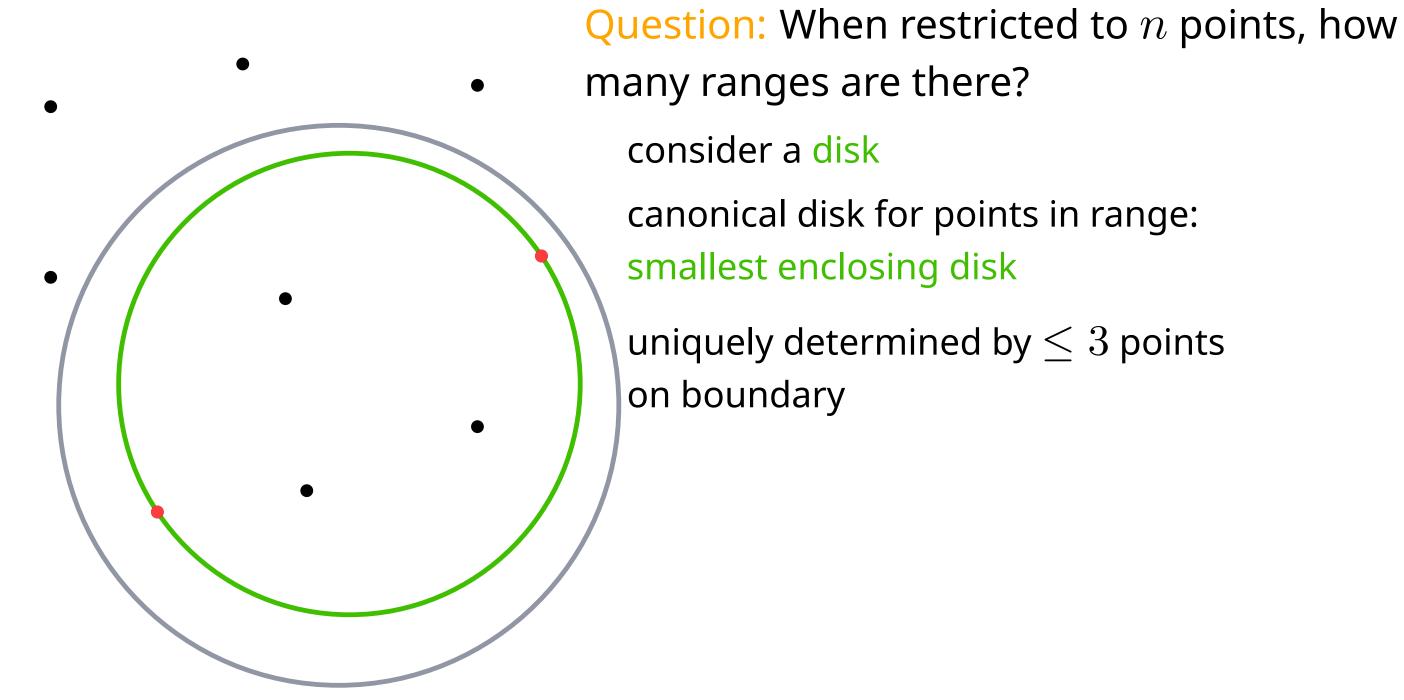
Question: When restricted to *n* points, how many ranges are there?

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks

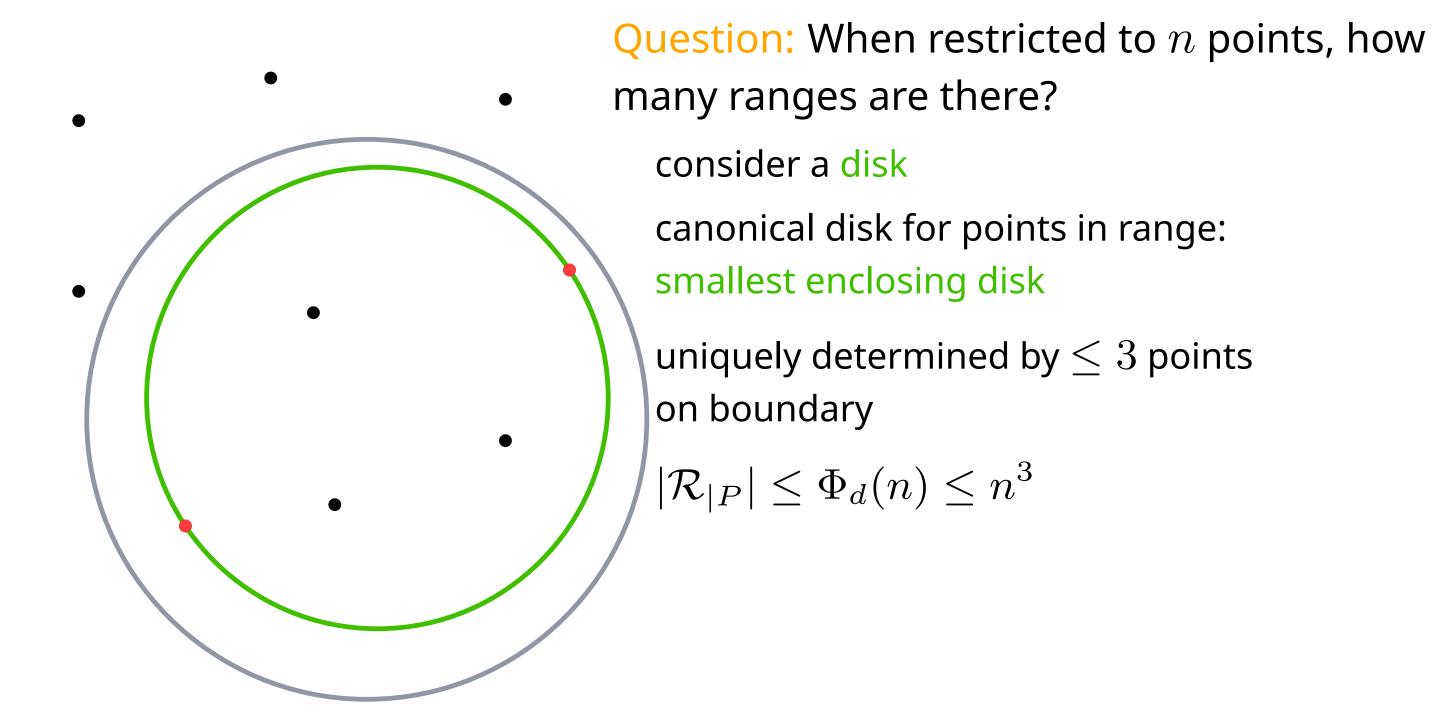


Question: When restricted to *n* points, how

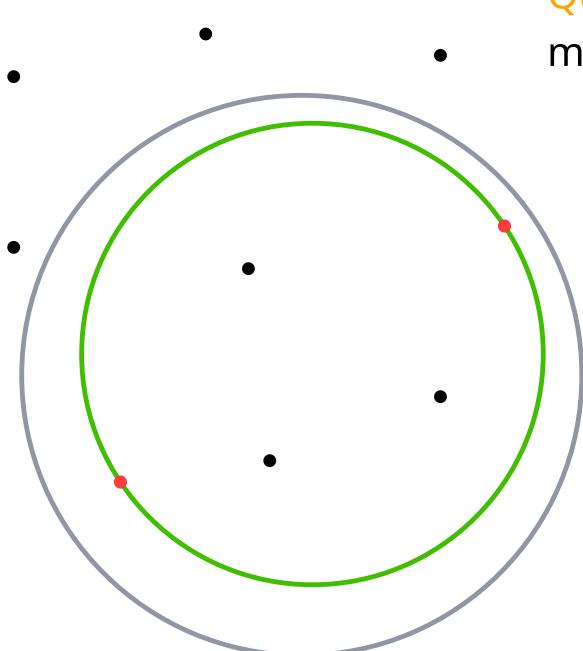
range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks



range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks



range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks



many ranges are there? consider a disk canonical disk for points in range: smallest enclosing disk

uniquely determined by ≤ 3 points on boundary

$$|\mathcal{R}_{|P}| \le \Phi_d(n) \le n^3$$

shattering dim ≤ 3

Question: When restricted to *n* points, how

shattering dimension \approx how many points determine a range

shattering dimension \approx how many points determine a range

range space

 (\mathbb{R},\mathcal{I}) , with $\mathcal{I} =$ set of closed intervals?

 $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks

 $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles

 $(\mathbb{R}^2, \mathcal{GR})$, with $\mathcal{GR} =$ set of arbitrary oriented rectangles

 $(\mathbb{R}^2, \mathcal{C})$, with $\mathcal{C} =$ set of closed convex sets

shattering dimension

3

shattering dimension \approx how many points determine a range

range space

 (\mathbb{R},\mathcal{I}) , with $\mathcal{I} =$ set of closed intervals

 $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks

 $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles ?

 $(\mathbb{R}^2, \mathcal{GR})$, with $\mathcal{GR} =$ set of arbitrary oriented rectangles

 $(\mathbb{R}^2, \mathcal{C})$, with $\mathcal{C} =$ set of closed convex sets

- shattering dimension
- 2
- 3

shattering dimension \approx how many points determine a range

range space

- (\mathbb{R},\mathcal{I}) , with $\mathcal{I} =$ set of closed intervals
- $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks
- $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles
- $(\mathbb{R}^2, \mathcal{GR})$, with $\mathcal{GR} =$ set of arbitrary oriented rectangles
- $(\mathbb{R}^2, \mathcal{C})$, with $\mathcal{C} =$ set of closed convex sets

- shattering dimension
- 2
- 3
- 4

shattering dimension \approx how many points determine a range

range space

 (\mathbb{R},\mathcal{I}) , with $\mathcal{I} =$ set of closed intervals

 $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks

 $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles

 $(\mathbb{R}^2, \mathcal{GR})$, with $\mathcal{GR} =$ set of arbitrary oriented rectangles

 $(\mathbb{R}^2, \mathcal{C})$, with $\mathcal{C} =$ set of closed convex sets

- shattering dimension
- 2
- 3
- 4
- 5

shattering dimension \approx how many points determine a range

range space

 (\mathbb{R},\mathcal{I}) , with $\mathcal{I} =$ set of closed intervals

 $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} =$ set of disks

 $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} =$ set of axis-aligned rectangles

 $(\mathbb{R}^2, \mathcal{GR})$, with $\mathcal{GR} =$ set of arbitrary oriented rectangles

 $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

Can be easier to compute than VC-dimension

- shattering dimension
- 2
- 3
- 4
- 5

VC-dimension δ shattering dimension d

VC-dimension δ shattering dimension d Sauer's lemma: $d \leq \delta$

VC-dimension δ shattering dimension d Sauer's lemma: $d \leq \delta$

claim: $\delta \leq O(d \log d)$

 $\begin{array}{l} \text{VC-dimension } \delta \\ \text{shattering dimension } d \\ \text{Sauer's lemma: } d \leq \delta \end{array}$

claim: $\delta \leq O(d \log d)$

Consider largest shattered $N \subset X$: $\delta = |N|$

VC-dimension δ shattering dimension d Sauer's lemma: $d \leq \delta$

claim: $\delta \leq O(d \log d)$

Consider largest shattered $N\subset X:\quad \delta=|N|$ $2^{\delta}=|\mathcal{R}_{|N}|\leq c\delta^d$

VC-dimension δ shattering dimension d Sauer's lemma: $d \leq \delta$

claim: $\delta \leq O(d \log d)$

Consider largest shattered $N \subset X$: $\delta = |N|$ $2^{\delta} = |\mathcal{R}_{|N}| \leq c \delta^d$

 $\delta \le \log(c) + d\log\delta$

VC-dimension δ shattering dimension dSauer's lemma: $d < \delta$

claim: $\delta \leq O(d \log d)$

Consider largest shattered $N \subset X : \delta = |N|$ $2^{\delta} = |\mathcal{R}_{|N}| \le c\delta^d$

 $\delta \le \log(c) + d\log\delta$ $\log \delta \le \log(\log(c) + d\log \delta) = O(\log(d\log \delta)) = O(\log d + \log \log \delta)$

VC-dimension δ shattering dimension dSauer's lemma: $d < \delta$

claim: $\delta \leq O(d \log d)$

Consider largest shattered $N \subset X : \delta = |N|$ $2^{\delta} = |\mathcal{R}_{|N}| \le c\delta^d$

 $\delta \le \log(c) + d\log\delta$ $\log \delta \le \log(\log(c) + d\log \delta) = O(\log(d\log \delta)) = O(\log d + \log \log \delta)$

 $\delta \le O(d \log \delta) = O(d \log d)$

Summary

range space (X, \mathcal{R})

VC-dimension δ

examples of geometric range spaces

$$\varepsilon$$
-sample of size $O\left(\frac{\delta + \log(\varphi^{-1})}{\varepsilon^2}\right)$
 ε -net of size $O\left(\frac{\delta \log \varepsilon^{-1} + \log(\varphi^{-1})}{\varepsilon}\right)$
applications for geometric approximation

shattering dimension d $d \le \delta \le d \log d$