
Approximate Nearest Neighbors via
Point Location Among Balls

q

ANN: What happened so far

P

(1 + ε)- Approximate Nearest Neighbors (ANN)

ANN: What happened so far

Problem statement:
Given q, P , find p such that d(q, p) ≤ (1 + ε)d(q, P)
where d(q, P) denotes the smallest distance from q to any other
point in P , i.e. distance to its nn

P

q

(1 + ε)- Approximate Nearest Neighbors (ANN)

ANN: What happened so far

Problem statement:
Given q, P , find p such that d(q, p) ≤ (1 + ε)d(q, P)
where d(q, P) denotes the smallest distance from q to any other
point in P , i.e. distance to its nn

P

q

(1 + ε)- Approximate Nearest Neighbors (ANN)

Solutions seen so far

?

ANN: What happened so far

Problem statement:
Given q, P , find p such that d(q, p) ≤ (1 + ε)d(q, P)
where d(q, P) denotes the smallest distance from q to any other
point in P , i.e. distance to its nn

P

q

(1 + ε)- Approximate Nearest Neighbors (ANN)

quadtrees: (1 + ε)-ANN for bounded spread
Solutions seen so far

ANN: What happened so far

Problem statement:
Given q, P , find p such that d(q, p) ≤ (1 + ε)d(q, P)
where d(q, P) denotes the smallest distance from q to any other
point in P , i.e. distance to its nn

P

q

(1 + ε)- Approximate Nearest Neighbors (ANN)

quadtrees: (1 + ε)-ANN for bounded spread
ring-separator tree: O(n)-ANN

Solutions seen so far

ANN: What happened so far

Problem statement:
Given q, P , find p such that d(q, p) ≤ (1 + ε)d(q, P)
where d(q, P) denotes the smallest distance from q to any other
point in P , i.e. distance to its nn

P

q

(1 + ε)- Approximate Nearest Neighbors (ANN)

quadtrees: (1 + ε)-ANN for bounded spread
ring-separator tree: O(n)-ANN
shifted quadtrees: nO(1)-ANN

Solutions seen so far

ANN: What happened so far

Problem statement:
Given q, P , find p such that d(q, p) ≤ (1 + ε)d(q, P)
where d(q, P) denotes the smallest distance from q to any other
point in P , i.e. distance to its nn

P

q

(1 + ε)- Approximate Nearest Neighbors (ANN)

quadtrees: (1 + ε)-ANN for bounded spread
ring-separator tree: O(n)-ANN
shifted quadtrees: nO(1)-ANN

combined: (1 + ε)-ANN in low dimensions

Solutions seen so far

ANN: What happened so far
recap: shifting grids and quadtrees by a random vector b
For a ball B of radius r: the probability that B is not
in a single cell of Gd(b,∆) is at most min

(
2dr
∆ , 1

)
.

b

ANN: What happened so far
recap: shifting grids and quadtrees by a random vector b
For a ball B of radius r: the probability that B is not
in a single cell of Gd(b,∆) is at most min

(
2dr
∆ , 1

)
.

b

For t > 0 holds P [Lb(p, q) > log2 ||p− q||+ t] ≤ 4d
2t .

With high probability p and q in same cell at level
log2 ||p− q||+ c log n (size of cell: ‖p− q‖nc)

b+ 0 b+ 1α β
level

0

−1

−2

−3

Lb(α, β) = −1

ANN: today

Approximating a metric space by a hierarchical well-separated tree (HST)
hierachical well-separated trees
simple (n− 1)-approximation
fast nO(1)-approximation in Rd

ANN via point location among balls
simple construction
handling a range of radii
ANN data structure based on HST

ANN: today

Approximating a metric space by a hierarchical well-separated tree (HST)
hierachical well-separated trees
simple (n− 1)-approximation
fast nO(1)-approximation in Rd

ANN via point location among balls
simple construction
handling a range of radii
ANN data structure based on HST

. . . and next time
point location among approximate balls
approximate Voronoi diagrams

Approximating a metric space by a
hierarchical well-separated tree (HST)

19

9

0 6

0 0

0 0

12

Metric space

metric space M = (X, d):
a set X
a distance function d : X ×X → [0,∞)

?

Metric space

metric space M = (X, d):
a set X
a distance function d : X ×X → [0,∞)

• d(x, y) = 0 iff x=y
• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Metric space

metric space M = (X, d):
a set X
a distance function d : X ×X → [0,∞)

For n “points” P ⊂ X :
metric can be represented as matrix of size Θ(n2)

metric can be represented as weighted graph G with d(x, y) = distG(x, y)

• d(x, y) = 0 iff x=y
• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Metric space

metric space M = (X, d):
a set X
a distance function d : X ×X → [0,∞)

For n “points” P ⊂ X :
metric can be represented as matrix of size Θ(n2)

metric can be represented as weighted graph G with d(x, y) = distG(x, y)

Question: Examples of metric spaces?

• d(x, y) = 0 iff x=y
• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Metric space

metric space M = (X, d):
a set X
a distance function d : X ×X → [0,∞)

For n “points” P ⊂ X :
metric can be represented as matrix of size Θ(n2)

We want:
compact, hierarchical(, approximate) representation

metric can be represented as weighted graph G with d(x, y) = distG(x, y)

• d(x, y) = 0 iff x=y
• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Hierarchically well-separated tree (HST)

HST: rooted (binary) tree T over P with
• label ∆v ≥ 0 for each node v ∈ T

• each leaf up uniquely corresponds to a point p ∈
P ; ∆u = 0 for all leaves u.

• If u is child of v: ∆u ≤ ∆v

19

9

0 6

0 0

0 0

12

Hierarchically well-separated tree (HST)

HST: rooted (binary) tree T over P with
• label ∆v ≥ 0 for each node v ∈ T

• each leaf up uniquely corresponds to a point p ∈
P ; ∆u = 0 for all leaves u.

• If u is child of v: ∆u ≤ ∆v

storing representatives:
• for leaf up: reprup = p

• internal node v: reprv ∈ {reprv|v is a child of u}

19

9

0 6

0 0

0 0

12

Hierarchically well-separated tree (HST)

HST: rooted (binary) tree T over P with
• label ∆v ≥ 0 for each node v ∈ T

• each leaf up uniquely corresponds to a point p ∈
P ; ∆u = 0 for all leaves u.

• If u is child of v: ∆u ≤ ∆v

storing representatives:
• for leaf up: reprup = p

• internal node v: reprv ∈ {reprv|v is a child of u}

example: quadtree with ∆v = diameter of cell

19

9

0 6

0 0

0 0

12

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

19

9

0 6

0 0

0 0

12

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

19

9

0 6

0 0

0 0

12

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

simple HST construction:
given: metric M = (P, d) as weighted graph a b

c

d

e

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

simple HST construction:
given: metric M = (P, d) as weighted graph
1. compute minimum spanning tree

a b

c

d

e

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

simple HST construction:
given: metric M = (P, d) as weighted graph
1. compute minimum spanning tree
2. sort edges of MST from short to long

a b

c

d

e

1.
2.

3.

4.

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

simple HST construction:
given: metric M = (P, d) as weighted graph
1. compute minimum spanning tree
2. sort edges of MST from short to long

a b

c

d

e

1.
2.

3.

4.

3. build HST bottom-up: add vertex for MST edge
with the two merged components as children

a e b d c

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

simple HST construction:
given: metric M = (P, d) as weighted graph
1. compute minimum spanning tree
2. sort edges of MST from short to long

a b

c

d

e

1.
2.

3.

4.

3. build HST bottom-up: add vertex for MST edge
with the two merged components as children

a e b d c

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

simple HST construction:
given: metric M = (P, d) as weighted graph
1. compute minimum spanning tree
2. sort edges of MST from short to long

a b

c

d

e

1.
2.

3.

4.

3. build HST bottom-up: add vertex for MST edge
with the two merged components as children

a e b d c

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

simple HST construction:
given: metric M = (P, d) as weighted graph
1. compute minimum spanning tree
2. sort edges of MST from short to long

a b

c

d

e

1.
2.

3.

4.

3. build HST bottom-up: add vertex for MST edge
with the two merged components as children

a e b d c

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

simple HST construction:
given: metric M = (P, d) as weighted graph
1. compute minimum spanning tree
2. sort edges of MST from short to long

a b

c

d

e

1.
2.

3.

4.

3. build HST bottom-up: add vertex for MST edge
with the two merged components as children

a e b d c

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

simple HST construction:
given: metric M = (P, d) as weighted graph
1. compute minimum spanning tree
2. sort edges of MST from short to long

a b

c

d

e

1.
2.

3.

4.

3. build HST bottom-up: add vertex for MST edge
with the two merged components as children

a e b d c4. set ∆v = 0 for leaves
5. for v with point set Pv in subtree and MST edge weight w: ∆v := (|Pv| − 1)w

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

simple HST construction:
given: metric M = (P, d) as weighted graph
1. compute minimum spanning tree
2. sort edges of MST from short to long

a b

c

d

e

1.
2.

3.

4.

3. build HST bottom-up: add vertex for MST edge
with the two merged components as children

a e b d c4. set ∆v = 0 for leaves
5. for v with point set Pv in subtree and MST edge weight w: ∆v := (|Pv| − 1)w

∆v = 3dM (a, b)

Hierarchically well-separated tree (HST)

dT (p, q) := ∆lca(up,uq) is a metric (lca: least common ancestor)

metric N t-approximates metric M :
dM (x, y) ≤ dN (x, y) ≤ t · dM (x, y)

simple HST construction:
given: metric M = (P, d) as weighted graph
1. compute minimum spanning tree
2. sort edges of MST from short to long

a b

c

d

e

1.
2.

3.

4.

3. build HST bottom-up: add vertex for MST edge
with the two merged components as children

a e b d c4. set ∆v = 0 for leaves
5. for v with point set Pv in subtree and MST edge weight w: ∆v := (|Pv| − 1)w

∆v = 3dM (a, b)

∆v = 4dM (b, c)

Small Assignment
Construct the HST for this metric space M (weights shown on edges). Is it a
t-approximation of M?

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

Small Assignment
Construct the HST for this metric space M (weights shown on edges). Is it a
t-approximation of M?

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

Small Assignment
Construct the HST for this metric space M (weights shown on edges). Is it a
t-approximation of M?

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c

Small Assignment
Construct the HST for this metric space M (weights shown on edges). Is it a
t-approximation of M?

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

Small Assignment
Construct the HST for this metric space M (weights shown on edges). Is it a
t-approximation of M?

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

Small Assignment
Construct the HST for this metric space M (weights shown on edges). Is it a
t-approximation of M?

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12

Small Assignment
Construct the HST for this metric space M (weights shown on edges). Is it a
t-approximation of M?

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12
0 4 7 2
4 0 3 5
7 3 0 6
2 5 6 0

0 12 12 2
12 0 3 12
12 3 0 12
2 12 12 0

dM : dHST :

Small Assignment
Construct the HST for this metric space M (weights shown on edges). Is it a
t-approximation of M?

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12
0 4 7 2
4 0 3 5
7 3 0 6
2 5 6 0

0 12 12 2
12 0 3 12
12 3 0 12
2 12 12 0

dM : dHST :

4-approximation

dM ≤ dHST ≤ (n− 1)dM

(0. if u child of v: ∆u ≤ ∆v)

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12

dM ≤ dHST ≤ (n− 1)dM

(0. if u child of v: ∆u ≤ ∆v)
a.) |Pu| < |Pv|
b.) edges handled in increasing order by weight

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12

dM ≤ dHST ≤ (n− 1)dM

(0. if u child of v: ∆u ≤ ∆v)

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12

1. dHST ≤ (n− 1)dM

dM ≤ dHST ≤ (n− 1)dM

(0. if u child of v: ∆u ≤ ∆v)

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12

1. dHST ≤ (n− 1)dM

x, y ∈ P , v := lca(ux, uy). Then

|Pv| − 1 ≤ n− 1

weight(MST edge for v)≤ dM (x, y)

dM ≤ dHST ≤ (n− 1)dM

(0. if u child of v: ∆u ≤ ∆v)

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12

1. dHST ≤ (n− 1)dM

x, y ∈ P , v := lca(ux, uy). Then

|Pv| − 1 ≤ n− 1

weight(MST edge for v)≤ dM (x, y)

⇒ dHST (x, y) = ∆v ≤ (n−1)dM (x, y)

dM ≤ dHST ≤ (n− 1)dM

(0. if u child of v: ∆u ≤ ∆v)

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12

1. dHST ≤ (n− 1)dM

2. dM ≤ dHST

dM ≤ dHST ≤ (n− 1)dM

(0. if u child of v: ∆u ≤ ∆v)

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12

1. dHST ≤ (n− 1)dM

2. dM ≤ dHST

x, y ∈ P , v := lca(ux, uy),
〈e1, . . . , ek〉 path from x to y in MST

dM ≤ dHST ≤ (n− 1)dM

(0. if u child of v: ∆u ≤ ∆v)

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12

1. dHST ≤ (n− 1)dM

2. dM ≤ dHST

x, y ∈ P , v := lca(ux, uy),
〈e1, . . . , ek〉 path from x to y in MST

dM (x, y)
= weight of shortest path from x to y in G
≤
∑

ei ≤ |Pv|max ei = ∆v

dM ≤ dHST ≤ (n− 1)dM

∆v := (|Pv| − 1)w

a b

cd

2 5

4

3

6

a d b c0 0 0 0

1 · 2 = 2 1 · 3 = 3

3 · 4 = 12

summary:
Given a metric over a set P , we can efficiently
construct a hierarchically well-balanced tree
that (n− 1)-approximates the metric.

dM ≤ dHST ≤ (n− 1)dM

summary:
Given a metric over a set P , we can efficiently
construct a hierarchically well-balanced tree
that (n− 1)-approximates the metric.

alternative for metric space Rd: shifted quadtree,
with ∆v = diameter of cell

b+ 0 b+ 1α β
level

0

−1

−2

−3

Lb(α, β) = −1

dM ≤ dHST ≤ (n− 1)dM

summary:
Given a metric over a set P , we can efficiently
construct a hierarchically well-balanced tree
that (n− 1)-approximates the metric.

alternative for metric space Rd: shifted quadtree,
with ∆v = diameter of cell

b+ 0 b+ 1α β
level

0

−1

−2

−3

Lb(α, β) = −1

dM (p, q) = ‖p− q‖ ≤ ∆lca(up,uq) = dHST (p, q)

dM ≤ dHST ≤ (n− 1)dM

summary:
Given a metric over a set P , we can efficiently
construct a hierarchically well-balanced tree
that (n− 1)-approximates the metric.

alternative for metric space Rd: shifted quadtree,
with ∆v = diameter of cell

b+ 0 b+ 1α β
level

0

−1

−2

−3

Lb(α, β) = −1

dM (p, q) = ‖p− q‖ ≤ ∆lca(up,uq) = dHST (p, q)

≤ nO(1)‖p− q‖ (with high probability)

dM ≤ dHST ≤ (n− 1)dM

summary:
Given a metric over a set P , we can efficiently
construct a hierarchically well-balanced tree
that (n− 1)-approximates the metric.

alternative for metric space Rd: shifted quadtree,
with ∆v = diameter of cell

b+ 0 b+ 1α β
level

0

−1

−2

−3

Lb(α, β) = −1

dM (p, q) = ‖p− q‖ ≤ ∆lca(up,uq) = dHST (p, q)

≤ nO(1)‖p− q‖ (with high probability)

= nO(1)dM (p, q)

Overview

Approximating a metric space by a hierarchical well-separated tree (HST)
hierachical well-separated trees
simple (n− 1)-approximation
fast nO(1)-approximation in Rd

ANN via point location among balls
simple construction
handling a range of radii
ANN data structure based on HST

Point Location among balls

q

b(p, r) = {q | d(p, q) ≤ r} denotes a ball around
point p with radius r

b(p, r)

p

Point Location among balls

q

b(p, r) = {q | d(p, q) ≤ r} denotes a ball around
point p with radius r

b(p, r)

p
point set P in a metric spaceM

Point Location among balls

q

b(p, r) = {q | d(p, q) ≤ r} denotes a ball around
point p with radius r

point set P in a metric spaceM
p

b(p, r)

Point Location among balls

For a collection of balls B,�B(q) denotes the
smallest ball containing q, or target ball for q

q

b(p, r) = {q | d(p, q) ≤ r} denotes a ball around
point p with radius r B

Point Location among balls

For a collection of balls B,�B(q) denotes the
smallest ball containing q, or target ball for q

q

b(p, r) = {q | d(p, q) ≤ r} denotes a ball around
point p with radius r B

Point location among balls:
Given a collection of balls B and a query point q,
find the target ball�B(q) of q

Point Location among balls

For a collection of balls B,�B(q) denotes the
smallest ball containing q, or target ball for q

q

b(p, r) = {q | d(p, q) ≤ r} denotes a ball around
point p with radius r B

Point location among balls:
Given a collection of balls B and a query point q,
find the target ball�B(q) of q

Relation (1 + ε)-ANN and PLEB

Gaining some intuition:

p

q

b(p, r)

Relation (1 + ε)-ANN and PLEB

Gaining some intuition:

p

r = d(q, p) ≥ d(q, P)

q

b(p, r)

Relation (1 + ε)-ANN and PLEB

Gaining some intuition:

s

p

b(s, r′)

r′ = d(q, s) ≤ (1 + ε)d(q, P)

r = d(q, p) ≥ d(q, P)

q

b(p, r)

Relation (1 + ε)-ANN and PLEB

Gaining some intuition:

s

p

since r ≤ r′, we have d(q, p) ≤ (1 + ε)d(q, P)

b(s, r′)

r′ = d(q, s) ≤ (1 + ε)d(q, P)

r = d(q, p) ≥ d(q, P)

q

b(p, r)

Relation (1 + ε)-ANN and PLEB

Gaining some intuition:

s

p

since r ≤ r′, we have d(q, p) ≤ (1 + ε)d(q, P)

b(s, r′)

r′ = d(q, s) ≤ (1 + ε)d(q, P)

r = d(q, p) ≥ d(q, P)

q

b(p, r)

Choice of ball sizes matters!

Relation (1 + ε)-ANN and PLEB

Gaining some intuition:

p

since r ≤ r′, we have d(q, p) ≤ (1 + ε)d(q, P)

r = d(q, p) ≥ d(q, P)

q

Choice of ball sizes matters!

s
r′ = d(q, s) ≤ (1 + ε)d(q, P)

Reduction

q

Reduction from (1 + ε)-ANN to Point location among balls

define U(P, r) =
⋃

p∈P b(p, r)
union of balls of radius r

Reduction

q

Reduction from (1 + ε)-ANN to Point location among balls

define U(P, r) =
⋃

p∈P b(p, r)
union of balls of radius r

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

q

Reduction from (1 + ε)-ANN to Point location among balls

define U(P, r) =
⋃

p∈P b(p, r)
union of balls of radius r

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

q

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Proof: q
s

r
Let s = nn(q, P) and r = ||q − s|| = d(q, P).

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Proof:

Pick i such that (1 + ε)i <r ≤ (1 + ε)i+1.

q
s

r

We have that q ∈ b(s, (1 + ε)i+1)

Let s = nn(q, P) and r = ||q − s|| = d(q, P).

(1 + ε)i+1

(1 + ε)i

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Proof:

Pick i such that (1 + ε)i <r ≤ (1 + ε)i+1.

q
s

r

It must be that the target ball has a radius ≤ (1 + ε)i+1.
It cannot be smaller than r, or bigger than (1 + ε)i+1.

We have that q ∈ b(s, (1 + ε)i+1)

p

Let s = nn(q, P) and r = ||q − s|| = d(q, P).

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Proof:

Pick i such that (1 + ε)i <r ≤ (1 + ε)i+1.

q
s

r

It must be that the target ball has a radius ≤ (1 + ε)i+1.
It cannot be smaller than r, or bigger than (1 + ε)i+1.

We have that q ∈ b(s, (1 + ε)i+1)

It follows that ||q − p|| ≤ radius(�B(q)) ≤ (1 + ε)i+1 < (1 + ε)d(q, P)

p

Let s = nn(q, P) and r = ||q − s|| = d(q, P).

Reduction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

Proof:

Pick i such that (1 + ε)i <r ≤ (1 + ε)i+1.

q
s

r

It must be that the target ball has a radius ≤ (1 + ε)i+1.
It cannot be smaller than r, or bigger than (1 + ε)i+1.

We have that q ∈ b(s, (1 + ε)i+1)

It follows that ||q − p|| ≤ radius(�B(q)) ≤ (1 + ε)i+1 < (1 + ε)d(q, P)

p is (1 + ε)-ANN to q!

p

Let s = nn(q, P) and r = ||q − s|| = d(q, P).

First ideas – simple construction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

q

First ideas – simple construction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

q

One issue.. ..|B| is unbounded!

First ideas – simple construction

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

q

One issue..
Solution: limit the range of radii

..|B| is unbounded!

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

First ideas – simple construction

One issue..
Solution: limit the range of radii

..|B| is unbounded!

Consider pair of points u, v ∈ P

q

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

First ideas – simple construction

One issue..
Solution: limit the range of radii

..|B| is unbounded!

Consider pair of points u, v ∈ P

q

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

1. if q much closer to u than to v: easy to decide
e.g. if d(q, u) ≤ d(u, v)/4

First ideas – simple construction

One issue..
Solution: limit the range of radii

..|B| is unbounded!

Consider pair of points u, v ∈ P

q

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

1. if q much closer to u than to v: easy to decide
e.g. if d(q, u) ≤ d(u, v)/4

First ideas – simple construction

One issue..
Solution: limit the range of radii

..|B| is unbounded!

Consider pair of points u, v ∈ P

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

2. if q very far from u and v: choice does not matter

q

1. if q much closer to u than to v: easy to decide
e.g. if d(q, u) ≤ d(u, v)/4

First ideas – simple construction

One issue..
Solution: limit the range of radii

..|B| is unbounded!

Consider pair of points u, v ∈ P

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

2. if q very far from u and v: choice does not matter
i.e. if d(q, u) ≥ 2d(u, v)/ε

q

1. if q much closer to u than to v: easy to decide
e.g. if d(q, u) ≤ d(u, v)/4

First ideas – simple construction

One issue..
Solution: limit the range of radii

..|B| is unbounded!

Consider pair of points u, v ∈ P

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

2. if q very far from u and v: choice does not matter
i.e. if d(q, u) ≥ 2d(u, v)/ε

1. if q much closer to u than to v: easy to decide
e.g. if d(q, u) ≤ d(u, v)/4

Observations:
(1) We only need range of radii:
r/d(u, v) ∈ [1/4, 2/ε]

First ideas – simple construction

One issue..
Solution: limit the range of radii

..|B| is unbounded!

Consider pair of points u, v ∈ P

Lemma: Let B =
⋃∞

i=−∞U(P, (1 + ε)i).
For a query q, let p be the center of�B(q).
Then p is (1 + ε)-ANN to q.

2. if q very far from u and v: choice does not matter
i.e. if d(q, u) ≥ 2d(u, v)/ε

1. if q much closer to u than to v: easy to decide
e.g. if d(q, u) ≤ d(u, v)/4

Observations:
(1) We only need range of radii:
r/d(u, v) ∈ [1/4, 2/ε]

(2) need to avoid range
dependent on pairs, otherwise
Θ(n2) disks

Handling a range of radii

q

Near neighbor data structureD(P, r)

Handling a range of radii

q

Near neighbor data structureD(P, r)

Decides given q, if
d(q, P) ≤ r , or
d(q, P) > r

If d(q, P) ≤ r it returns a point p s.t. d(q, p) ≤ r

Handling a range of radii

q

Near neighbor data structureD(P, r)

Decides given q, if
d(q, P) ≤ r , or
d(q, P) > r

If d(q, P) ≤ r it returns a point p s.t. d(q, p) ≤ r

A query can be resolved by iteratively checking for each ball in
U(P, r) if it contains q

Handling a range of radii

Near neighbor data structureD(P, r)

Given interval [a, b], LetNi = D(P, ri) where
ri = min

(
(1 + ε)ia, b

)
for i = 0, . . . ,M = dlog1+ε(b

a
)e

N0
N1
N2

Handling a range of radii

Near neighbor data structureD(P, r)

Given interval [a, b], LetNi = D(P, ri) where
ri = min

(
(1 + ε)ia, b

)
for i = 0, . . . ,M = dlog1+ε(b

a
)e

a b

N0
N1
N2

N0 N1 N2 N3 N4

Handling a range of radii

Near neighbor data structureD(P, r)

Given interval [a, b], LetNi = D(P, ri) where
ri = min

(
(1 + ε)ia, b

)
for i = 0, . . . ,M = dlog1+ε(b

a
)e

Let Î(P, a, b, ε) =
{
N0, . . . ,NM

}Interval near neighbor data structure Î(P, a, b, ε)

a b

N0
N1
N2

Handling a range of radii

Interval near neighbor data structure Î(P, a, b, ε)

Lemma: Given P , a ≤ b and ε > 0, one can
construct Î(P, a, b, ε) such that: (A) Î is made
out of O(ε−1 log(b/a)) nn structures, and (B)
given a query point q it can decide if:

Handling a range of radii

Interval near neighbor data structure Î(P, a, b, ε)

Lemma: Given P , a ≤ b and ε > 0, one can
construct Î(P, a, b, ε) such that: (A) Î is made
out of O(ε−1 log(b/a)) nn structures, and (B)
given a query point q it can decide if:
1. d(q, P) ≤ a, or
2. d(q, P) > b and otherwise
3. Return a radius r and point p s.t.

d(q, P) ≤ r = d(q, p) ≤ (1 + ε)d(q, P)

Handling a range of radii

Interval near neighbor data structure Î(P, a, b, ε)

Lemma: Given P , a ≤ b and ε > 0, one can
construct Î(P, a, b, ε) such that: (A) Î is made
out of O(ε−1 log(b/a)) nn structures, and (B)
given a query point q it can decide if:
1. d(q, P) ≤ a, or
2. d(q, P) > b and otherwise
3. Return a radius r and point p s.t.

d(q, P) ≤ r = d(q, p) ≤ (1 + ε)d(q, P)

number of queries required isO(log(ε−1 log(b/a)))

Handling a range of radii

Interval near neighbor data structure Î(P, a, b, ε)

Lemma: Given P , a ≤ b and ε > 0, one can
construct Î(P, a, b, ε) such that: (A) Î is made
out of O(ε−1 log(b/a)) nn structures, and (B)
given a query point q it can decide if:
1. d(q, P) ≤ a, or
2. d(q, P) > b and otherwise
3. Return a radius r and point p s.t.

d(q, P) ≤ r = d(q, p) ≤ (1 + ε)d(q, P)

number of queries required isO(log(ε−1 log(b/a)))

Recall,M = dlog1+ε(b/a)e

Handling a range of radii

Interval near neighbor data structure Î(P, a, b, ε)

Lemma: Given P , a ≤ b and ε > 0, one can
construct Î(P, a, b, ε) such that: (A) Î is made
out of O(ε−1 log(b/a)) nn structures, and (B)
given a query point q it can decide if:
1. d(q, P) ≤ a, or
2. d(q, P) > b and otherwise
3. Return a radius r and point p s.t.

d(q, P) ≤ r = d(q, p) ≤ (1 + ε)d(q, P)

number of queries required isO(log(ε−1 log(b/a)))

Recall,M = dlog1+ε(b/a)e
O(log(b/a)/ε) nn structures

Handling a range of radii

Interval near neighbor data structure Î(P, a, b, ε)

Lemma: Given P , a ≤ b and ε > 0, one can
construct Î(P, a, b, ε) such that: (A) Î is made
out of O(ε−1 log(b/a)) nn structures, and (B)
given a query point q it can decide if:
1. d(q, P) ≤ a, or
2. d(q, P) > b and otherwise
3. Return a radius r and point p s.t.

d(q, P) ≤ r = d(q, p) ≤ (1 + ε)d(q, P)

number of queries required isO(log(ε−1 log(b/a)))

Recall,M = dlog1+ε(b/a)e

number of queries can be
achieved by doing a binary
search on the radius:
O(log(ε−1 log(b/a)))

O(log(b/a)/ε) nn structures

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P 19

9

0 6

0 0

0 0

12

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P 19

9

0 6

0 0

0 0

12• Each vertex v has a label ∆v ≥ 0.
• ∆v = 0 if v is a leaf.
• If u is a child of v, then ∆v ≥ ∆u

• ∆lca(u,v) denotes the t-approximated distance
between two leaves u and v

recall:

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P 19

9

0 6

0 0

0 0

12• Each vertex v has a label ∆v ≥ 0.
• ∆v = 0 if v is a leaf.
• If u is a child of v, then ∆v ≥ ∆u

• ∆lca(u,v) denotes the t-approximated distance
between two leaves u and v

• Each vertex v has a representative leaf reprv .
• repru ∈ {reprv

∣∣ v is a child of u}

recall:

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P 19

9

0 6

0 0

0 0

12

Recursively build search tree T (top-down):

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P

Recursively build search tree T (top-down):
Given subtree S ofH , create searchtree T (S)
rooted at node v = v(S) ∈ T

v(S)

S

19

9

0 6

0 0

0 0

12

T

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P

Recursively build search tree T (top-down):

Let P v = P (S) be the set of points/representatives of S

Given subtree S ofH , create searchtree T (S)
rooted at node v = v(S) ∈ T

v(S)

S

19

9

0 6

0 0

0 0

12

T

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P

Recursively build search tree T (top-down):

Let P v = P (S) be the set of points/representatives of S

Given subtree S ofH , create searchtree T (S)
rooted at node v = v(S) ∈ T

v(S)

S

Let uv ∈ V (S) be the separator of S

19

9

0 6

0 0

0 0

12

T

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P

Recursively build search tree T (top-down):

Let P v = P (S) be the set of points/representatives of S

Given subtree S ofH , create searchtree T (S)
rooted at node v = v(S) ∈ T

v(S)

S

Let uv ∈ V (S) be the separator of S

19

9

0 6

0 0

0 0

12

Removing a separator node breaks a (sub)tree T into
connected components of size at most |V (T)|/2

T

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P

Recursively build search tree T (top-down):

Let P v = P (S) be the set of points/representatives of S

Given subtree S ofH , create searchtree T (S)
rooted at node v = v(S) ∈ T

v(S)

S

Let uv ∈ V (S) be the separator of S

19

9

0 6

0 0

0 0

12

Removing a separator node breaks a (sub)tree T into
connected components of size at most |V (T)|/2

T

uv

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P

Recursively build search tree T (top-down):

Let P v = P (S) be the set of points/representatives of S

Given subtree S ofH , create searchtree T (S)
rooted at node v = v(S) ∈ T

v(S)

S

Let uv ∈ V (S) be the separator of S

19

9

0 6

0 0

0 0

12

T

uv

build and store Îv = Î(P v , rv , Rv , ε/4) in node v

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P

Recursively build search tree T (top-down):

Let P v = P (S) be the set of points/representatives of S

Given subtree S ofH , create searchtree T (S)
rooted at node v = v(S) ∈ T

v(S)

S

Let uv ∈ V (S) be the separator of S

19

9

0 6

0 0

0 0

12

T

uv

build and store Îv = Î(P v , rv , Rv , ε/4) in node v

rv =
∆(uv)

4t
and Rv = µ∆(uv)

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P

Recursively build search tree T (top-down):

Let P v = P (S) be the set of points/representatives of S

Given subtree S ofH , create searchtree T (S)
rooted at node v = v(S) ∈ T

v(S)

S

Let uv ∈ V (S) be the separator of S

19

9

0 6

0 0

0 0

12

T

uv

build and store Îv = Î(P v , rv , Rv , ε/4) in node v

rv =
∆(uv)

4t
and Rv = µ∆(uv)

µ = O(ε−1 logn)

The ANN data structure

Given: set of points P and
a t-approximate (B)HSTH on P

Recursively build search tree T (top-down):

Let P v = P (S) be the set of points/representatives of S

Given subtree S ofH , create searchtree T (S)
rooted at node v = v(S) ∈ T

v(S)

S

Let uv ∈ V (S) be the separator of S

19

9

0 6

0 0

0 0

12

T

uv

build and store Îv = Î(P v , rv , Rv , ε/4) in node v

rv =
∆(uv)

4t
and Rv = µ∆(uv)

Îv can be used to determine search path in T

µ = O(ε−1 logn)

The ANN data structure

H

S

uv

19

9

0 6

0 0

0 0

12

The ANN data structure

H

uv

SL SR

Sout

19

9

0 6

0 0

0 0

12

The ANN data structure

H

uv

SL SR

Sout

19

9

0 6

0 0

0 0

12
subtle:
Sout contains repuv but no
other points of SL and SR.

The ANN data structure

H

uv

SL SR

Sout

19

9

0 6

0 0

0 0

12

v

vRvL

vout

T

The ANN data structure

H

uv

SL SR

Sout

19

9

0 6

0 0

0 0

12

v

vRvL

vout

T

The ANN data structure

H

uv

SL SR

Sout

19

9

0 6

0 0

0 0

12

A query into Îv results in one of three cases:

Îv = Î(P v , rv , Rv , ε/4) stored in node v

v

vRvL

vout

T

rv =
∆(uv)

4t
and Rv = µ∆(uv)

The ANN data structure

H

uv

SL SR

Sout

19

9

0 6

0 0

0 0

12

A query into Îv results in one of three cases:

Îv = Î(P v , rv , Rv , ε/4) stored in node v

v

vRvL

vout

T

• d(q, P v) ≤ rv : Then q ∈ U(P v , rv) and the datastructure
returns a point p ∈ P v with d(q, p) ≤ rv .
Recurse into the subtree containing p

rv =
∆(uv)

4t
and Rv = µ∆(uv)

The ANN data structure

H

uv

SL SR

Sout

19

9

0 6

0 0

0 0

12

A query into Îv results in one of three cases:

Îv = Î(P v , rv , Rv , ε/4) stored in node v

v

vRvL

vout

T

• d(q, P v) ≤ rv : Then q ∈ U(P v , rv) and the datastructure
returns a point p ∈ P v with d(q, p) ≤ rv .
Recurse into the subtree containing p

• d(q, P v) ∈ (rv , Rv]: Then the query finds a
(1 + ε/4)-ANN point s ∈ P v and returns it as
the answer to the query

rv =
∆(uv)

4t
and Rv = µ∆(uv)

The ANN data structure

H

uv

SL SR

Sout

19

9

0 6

0 0

0 0

12

A query into Îv results in one of three cases:

Îv = Î(P v , rv , Rv , ε/4) stored in node v

v

vRvL

vout

T

• d(q, P v) ≤ rv : Then q ∈ U(P v , rv) and the datastructure
returns a point p ∈ P v with d(q, p) ≤ rv .
Recurse into the subtree containing p

• d(q, P v) ∈ (rv , Rv]: Then the query finds a
(1 + ε/4)-ANN point s ∈ P v and returns it as
the answer to the query

• d(q, P v) > Rv :
Then the search continues recursively in vout

rv =
∆(uv)

4t
and Rv = µ∆(uv)

Correctness

Lemma: The point returned by the data structure is a
(1 + ε)-ANN to the query point q in P .

Proof (sketch, case 1):
d(q, P v) ≤ rv ; recurse into subtree with returned point p.

Correctness

Lemma: The point returned by the data structure is a
(1 + ε)-ANN to the query point q in P .

Proof (sketch, case 1):
d(q, P v) ≤ rv ; recurse into subtree with returned point p.
We need to show that the algorithm recurses into a subtree which contains a (1 + ε)-ANN
point. If the algorithm continues to vL, we have that d(P v

L, P
v \ P v

L) ≥ ∆(uv)/t. For
qL = nn(q, P v

L), by the triangle inequality we have that

d(q, Pv \ P v
L) ≥ d(qL, P

v \ P v
L)− d(q, qL) ≥ ∆(uv)

t
− rv >

∆(uv)

2t
> rv

rv = ∆(uv)/4t

Space Complexity

Lemma: For t = nO(1), the data structure is made out ofO(n
ε log2 n) balls.

Proof (sketch):

Space Complexity

Lemma: For t = nO(1), the data structure is made out ofO(n
ε log2 n) balls.

Proof (sketch):
Let U(nv) be the number of balls used in Îv , we have µ = O(ε−1 logn) and
Î(P, a, b, ε) is made out ofO(n

ε
log(b/a)) balls (previous slide).

Space Complexity

Lemma: For t = nO(1), the data structure is made out ofO(n
ε log2 n) balls.

Proof (sketch):
Let U(nv) be the number of balls used in Îv , we have µ = O(ε−1 logn) and
Î(P, a, b, ε) is made out ofO(n

ε
log(b/a)) balls (previous slide).

we have:

U(nv) = O(
nv

ε
log

Rv

rv
) = O(

nv

ε
log(

t logn

ε
))

Space Complexity

Lemma: For t = nO(1), the data structure is made out ofO(n
ε log2 n) balls.

Proof (sketch):
Let U(nv) be the number of balls used in Îv , we have µ = O(ε−1 logn) and
Î(P, a, b, ε) is made out ofO(n

ε
log(b/a)) balls (previous slide).

we have:

U(nv) = O(
nv

ε
log

Rv

rv
) = O(

nv

ε
log(

t logn

ε
))

For the total number of balls, we get the recurrence
B(n) = U(n) +B(nL) +B(nR) +B(nout)
(we have nL, nR, nout ≤ n/2 + 1 andB(nL) +B(nR) +B(nout) = n).
This results inB(2n) = O(ε−1n logn log(ε−1t logn)) = O((n/ε) log2 n)

count each occurrence of
point as repr. (overall 2n)

Number of Queries

Lemma: For t = nO(1), the ANN-query algorithm performs
O(log(n/ε)) near neighbor queries

Proof (sketch):

Number of Queries

Lemma: For t = nO(1), the ANN-query algorithm performs
O(log(n/ε)) near neighbor queries

Proof (sketch):
For every internal node v on the search path π in T corresponds to a situation where
d(q, P) ≤ rv or d(q, P) > Rv , which can be decided by two nearest neighbor queries.

In the final node u in π, the search algorithm resolves the query usingO
(

log log Rv/rv
ε

)
= O(log(1/ε) + log logn) near neighbor queries.

Since the depth of the tree isO(logn), the total number of queries becomes
O(logn+ log(1/ε) + log logn) = O(logn/ε).

Summary

Approximating a metric space by a hierarchical well-separated tree (HST)
hierachical well-separated trees
simple (n− 1)-approximation
fast nO(1)-approximation in Rd

ANN via point location among balls
simple construction
handling a range of radii
ANN data structure based on HST

. . . and next time
point location among approximate balls
approximate Voronoi diagrams

