Approximate Nearest Neighbors via Point Location Among Balls

ANN: What happened so far

$(1+\varepsilon)$ - Approximate Nearest Neighbors (ANN)

ANN: What happened so far

$(1+\varepsilon)$ - Approximate Nearest Neighbors (ANN)

Problem statement:
Given q, P, find p such that $d(q, p) \leq(1+\varepsilon) d(q, P)$
where $d(q, P)$ denotes the smallest distance from q to any other
point in P, i.e. distance to its nn

ANN: What happened so far

$(1+\varepsilon)$ - Approximate Nearest Neighbors (ANN)

Problem statement:

Given q, P, find p such that $d(q, p) \leq(1+\varepsilon) d(q, P)$ where $d(q, P)$ denotes the smallest distance from q to any other point in P, i.e. distance to its $n n$

Solutions seen so far

ANN: What happened so far

$(1+\varepsilon)$ - Approximate Nearest Neighbors (ANN)

Problem statement:

Given q, P, find p such that $d(q, p) \leq(1+\varepsilon) d(q, P)$ where $d(q, P)$ denotes the smallest distance from q to any other point in P, i.e. distance to its nn

Solutions seen so far

quadtrees: $(1+\varepsilon)$-ANN for bounded spread

ANN: What happened so far

$(1+\varepsilon)$ - Approximate Nearest Neighbors (ANN)

Problem statement:

Given q, P, find p such that $d(q, p) \leq(1+\varepsilon) d(q, P)$ where $d(q, P)$ denotes the smallest distance from q to any other point in P, i.e. distance to its nn

Solutions seen so far

quadtrees: $(1+\varepsilon)$-ANN for bounded spread ring-separator tree: $O(n)$-ANN

ANN: What happened so far

$(1+\varepsilon)$ - Approximate Nearest Neighbors (ANN)

Problem statement:

Given q, P, find p such that $d(q, p) \leq(1+\varepsilon) d(q, P)$ where $d(q, P)$ denotes the smallest distance from q to any other point in P, i.e. distance to its nn

Solutions seen so far

quadtrees: $(1+\varepsilon)$-ANN for bounded spread ring-separator tree: $O(n)$-ANN
shifted quadtrees: $n^{O(1)}$-ANN

ANN: What happened so far

$(1+\varepsilon)$ - Approximate Nearest Neighbors (ANN)

Problem statement:

Given q, P, find p such that $d(q, p) \leq(1+\varepsilon) d(q, P)$ where $d(q, P)$ denotes the smallest distance from q to any other point in P, i.e. distance to its $n n$

Solutions seen so far

quadtrees: $(1+\varepsilon)$-ANN for bounded spread ring-separator tree: $O(n)$-ANN
shifted quadtrees: $n^{O(1)}$-ANN
combined: $(1+\varepsilon)$-ANN in low dimensions

ANN: What happened so far

recap: shifting grids and quadtrees by a random vector b
For a ball B of radius r : the probability that B is not in a single cell of $G^{d}(b, \Delta)$ is at most $\min \left(\frac{2 d r}{\Delta}, 1\right)$.

ANN: What happened so far

recap: shifting grids and quadtrees by a random vector b
For a ball B of radius r : the probability that B is not in a single cell of $G^{d}(b, \Delta)$ is at most min $\left(\frac{2 d r}{\Delta}, 1\right)$.

For $t>0$ holds $\mathbb{P}\left[\mathbb{L}_{b}(p, q)>\log _{2}\|p-q\|+t\right] \leq \frac{4 d}{2^{t}}$.
With high probability p and q in same cell at level $\log _{2}\|p-q\|+c \log n \quad$ (size of cell: $\|p-q\| n^{c}$)

ANN: today

Approximating a metric space by a hierarchical well-separated tree (HST)

 hierachical well-separated treessimple $(n-1)$-approximation
fast $n^{O(1)}$-approximation in \mathbb{R}^{d}

ANN via point location among balls

simple construction
handling a range of radii
ANN data structure based on HST

ANN: today

Approximating a metric space by a hierarchical well-separated tree (HST)

hierachical well-separated trees
simple $(n-1)$-approximation
fast $n^{O(1)}$-approximation in \mathbb{R}^{d}

ANN via point location among balls

simple construction
handling a range of radii
ANN data structure based on HST
. . . and next time
point location among approximate balls
approximate Voronoi diagrams

Approximating a metric space by a hierarchical well-separated tree (HST)

Metric space

metric space $M=(X, d)$:
a set X
a distance function $d: X \times X \rightarrow[0, \infty)$
?

Metric space

metric space $M=(X, d)$:
a set X
a distance function $d: X \times X \rightarrow[0, \infty)$

- $d(x, y)=0$ iff $\mathrm{x}=\mathrm{y}$
- $d(x, y)=d(y, x)$
- $d(x, z) \leq d(x, y)+d(y, z)$ (triangle inequality)

Metric space

metric space $M=(X, d)$:
a set X
a distance function $d: X \times X \rightarrow[0, \infty)$

- $d(x, y)=0$ iff $\mathrm{x}=\mathrm{y}$
- $d(x, y)=d(y, x)$
- $d(x, z) \leq d(x, y)+d(y, z)$ (triangle inequality)

For n "points" $P \subset X$:
metric can be represented as matrix of size $\Theta\left(n^{2}\right)$
 metric can be represented as weighted graph G with $d(x, y)=\operatorname{dist}_{G}(x, y)$

Metric space

metric space $M=(X, d)$:
a set X
a distance function $d: X \times X \rightarrow[0, \infty)$

- $d(x, y)=0$ iff $\mathrm{x}=\mathrm{y}$
- $d(x, y)=d(y, x)$
- $d(x, z) \leq d(x, y)+d(y, z)$ (triangle inequality)

For n "points" $P \subset X$:
metric can be represented as matrix of size $\Theta\left(n^{2}\right)$
 metric can be represented as weighted graph G with $d(x, y)=\operatorname{dist}_{G}(x, y)$

Question: Examples of metric spaces?

Metric space

metric space $M=(X, d)$:
a set X
a distance function $d: X \times X \rightarrow[0, \infty)$

- $d(x, y)=0$ iff $\mathrm{x}=\mathrm{y}$
- $d(x, y)=d(y, x)$
- $d(x, z) \leq d(x, y)+d(y, z)$ (triangle inequality)

For n "points" $P \subset X$:
metric can be represented as matrix of size $\Theta\left(n^{2}\right)$
 metric can be represented as weighted graph G with $d(x, y)=\operatorname{dist}_{G}(x, y)$

We want:
compact, hierarchical(, approximate) representation

Hierarchically well-separated tree (HST)

HST: rooted (binary) tree T over P with

- label $\Delta_{v} \geq 0$ for each node $v \in T$
- each leaf u_{p} uniquely corresponds to a point $p \in$ $P ; \Delta_{u}=0$ for all leaves u.
- If u is child of $v: \Delta_{u} \leq \Delta_{v}$

Hierarchically well-separated tree (HST)

HST: rooted (binary) tree T over P with

- label $\Delta_{v} \geq 0$ for each node $v \in T$
- each leaf u_{p} uniquely corresponds to a point $p \in$ $P ; \Delta_{u}=0$ for all leaves u.
- If u is child of $v: \Delta_{u} \leq \Delta_{v}$
storing representatives:
- for leaf u_{p} : repr $_{u_{p}}=p$
- internal node $v: \operatorname{repr}_{v} \in\left\{\operatorname{repr}_{v} \mid v\right.$ is a child of $\left.u\right\}$

Hierarchically well-separated tree (HST)

HST: rooted (binary) tree T over P with

- label $\Delta_{v} \geq 0$ for each node $v \in T$
- each leaf u_{p} uniquely corresponds to a point $p \in$ $P ; \Delta_{u}=0$ for all leaves u.
- If u is child of $v: \Delta_{u} \leq \Delta_{v}$

storing representatives:

- for leaf $u_{p}:$ repr $_{u_{p}}=p$
- internal node $v: \operatorname{repr}_{v} \in\left\{\operatorname{repr}_{v} \mid v\right.$ is a child of $\left.u\right\}$

example: quadtree with $\Delta_{v}=$ diameter of cell

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor)

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{\text {lca }\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

simple HST construction:
given: metric $M=(P, d)$ as weighted graph

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

simple HST construction:
given: metric $M=(P, d)$ as weighted graph

1. compute minimum spanning tree

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

simple HST construction:

given: metric $M=(P, d)$ as weighted graph

1. compute minimum spanning tree
2. sort edges of MST from short to long

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

simple HST construction:

given: metric $M=(P, d)$ as weighted graph

1. compute minimum spanning tree
2. sort edges of MST from short to long
3. build HST bottom-up: add vertex for MST edge with the two merged components as children

$$
a \bullet e \bullet b \bullet d \bullet c \bullet
$$

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Inca: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

simple HST construction:

given: metric $M=(P, d)$ as weighted graph

1. compute minimum spanning tree
2. sort edges of MST from short to long
3. build HST bottom-up: add vertex for MST edge with the two merged components as children

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

simple HST construction:

given: metric $M=(P, d)$ as weighted graph

1. compute minimum spanning tree
2. sort edges of MST from short to long
3. build HST bottom-up: add vertex for MST edge with the two merged components as children

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

simple HST construction:

given: metric $M=(P, d)$ as weighted graph

1. compute minimum spanning tree
2. sort edges of MST from short to long
3. build HST bottom-up: add vertex for MST edge with the two merged components as children

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

simple HST construction:

given: metric $M=(P, d)$ as weighted graph

1. compute minimum spanning tree
2. sort edges of MST from short to long
3. build HST bottom-up: add vertex for MST edge with the two merged components as children

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

simple HST construction:

given: metric $M=(P, d)$ as weighted graph

1. compute minimum spanning tree
2. sort edges of MST from short to long
3. build HST bottom-up: add vertex for MST edge with the two merged components as children
4. set $\Delta_{v}=0$ for leaves

5. for v with point set P_{v} in subtree and MST edge weight $w: \Delta_{v}:=\left(\left|P_{v}\right|-1\right) w$

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

simple HST construction:

given: metric $M=(P, d)$ as weighted graph

1. compute minimum spanning tree
2. sort edges of MST from short to long
3. build HST bottom-up: add vertex for MST edge with the two merged components as children
4. set $\Delta_{v}=0$ for leaves

5. for v with point set P_{v} in subtree and MST edge weight $w: \Delta_{v}:=\left(\left|P_{v}\right|-1\right) w$

Hierarchically well-separated tree (HST)

$d_{T}(p, q):=\Delta_{l c a\left(u_{p}, u_{q}\right)}$ is a metric (Ica: least common ancestor) metric $N t$-approximates metric M :

$$
d_{M}(x, y) \leq d_{N}(x, y) \leq t \cdot d_{M}(x, y)
$$

simple HST construction:

given: metric $M=(P, d)$ as weighted graph

1. compute minimum spanning tree
2. sort edges of MST from short to long
3. build HST bottom-up: add vertex for MST edge with the two merged components as children
4. set $\Delta_{v}=0$ for leaves

5. for v with point set P_{v} in subtree and MST edge weight $w: \Delta_{v}:=\left(\left|P_{v}\right|-1\right) w$

Small Assignment

Construct the HST for this metric space M (weights shown on edges). Is it a t-approximation of M ?

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

Small Assignment

Construct the HST for this metric space M (weights shown on edges). Is it a t-approximation of M ?

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

Small Assignment

Construct the HST for this metric space M (weights shown on edges). Is it a t-approximation of M ?

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

Small Assignment

Construct the HST for this metric space M (weights shown on edges). Is it a t-approximation of M ?

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

Small Assignment

Construct the HST for this metric space M (weights shown on edges). Is it a t-approximation of M ?

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

Small Assignment

Construct the HST for this metric space M (weights shown on edges). Is it a t-approximation of M ?

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

Small Assignment

Construct the HST for this metric space M (weights shown on edges). Is it a t-approximation of M ?

$$
\begin{gathered}
d_{M}: \\
{\left[\begin{array}{llll}
0 & 4 & 7 & 2 \\
4 & 0 & 3 & 5 \\
7 & 3 & 0 & 6 \\
2 & 5 & 6 & 0
\end{array}\right]}
\end{gathered} \begin{array}{cccc}
\\
{\left[\begin{array}{cccc}
0 & 12 & 12 & 2 \\
12 & 0 & 3 & 12 \\
12 & 3 & 0 & 12 \\
2 & 12 & 12 & 0
\end{array}\right]}
\end{array}
$$

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

Small Assignment

Construct the HST for this metric space M (weights shown on edges). Is it a t-approximation of M ?

$$
\begin{gathered}
d_{M}: \\
\left.\begin{array}{c}
d_{H S T}: \\
{\left[\begin{array}{llll}
0 & 4 & 7 & 2 \\
4 & 0 & 3 & 5 \\
7 & 3 & 0 & 6 \\
2 & 5 & 6 & 0
\end{array}\right]}
\end{array} \begin{array}{cccc}
0 & 12 & 12 & 2 \\
12 & 0 & 3 & 12 \\
12 & 3 & 0 & 12 \\
2 & 12 & 12 & 0
\end{array}\right]
\end{gathered}
$$

4-approximation

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$
(0. if u child of $v: \Delta_{u} \leq \Delta_{v}$)

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$
(0. if u child of $v: \Delta_{u} \leq \Delta_{v}$)
a.) $\left|P_{u}\right|<\left|P_{v}\right|$
b.) edges handled in increasing order by weight

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$
(0. if u child of $v: \Delta_{u} \leq \Delta_{v}$)

1. $d_{H S T} \leq(n-1) d_{M}$

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$
(0. if u child of $v: \Delta_{u} \leq \Delta_{v}$)

1. $d_{H S T} \leq(n-1) d_{M}$
$x, y \in P, v:=l c a\left(u_{x}, u_{y}\right)$. Then
$\left|P_{v}\right|-1 \leq n-1$

weight(MST edge for $v) \leq d_{M}(x, y)$

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$
(0. if u child of $v: \Delta_{u} \leq \Delta_{v}$)

1. $d_{H S T} \leq(n-1) d_{M}$
$x, y \in P, v:=l c a\left(u_{x}, u_{y}\right)$. Then
$\left|P_{v}\right|-1 \leq n-1$

weight(MST edge for $v) \leq d_{M}(x, y)$

$$
\Rightarrow d_{H S T}(x, y)=\Delta_{v} \leq(n-1) d_{M}(x, y)
$$

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$
(0. if u child of $v: \Delta_{u} \leq \Delta_{v}$)

1. $d_{H S T} \leq(n-1) d_{M}$
2. $d_{M} \leq d_{H S T}$

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$
(0. if u child of $v: \Delta_{u} \leq \Delta_{v}$)
3. $d_{H S T} \leq(n-1) d_{M}$
4. $d_{M} \leq d_{H S T}$
$x, y \in P, v:=l c a\left(u_{x}, u_{y}\right)$,
 $\left\langle e_{1}, \ldots, e_{k}\right\rangle$ path from x to y in $M S T$

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$
(0. if u child of $v: \Delta_{u} \leq \Delta_{v}$)

1. $d_{H S T} \leq(n-1) d_{M}$
2. $d_{M} \leq d_{H S T}$
$x, y \in P, v:=\operatorname{lca}\left(u_{x}, u_{y}\right)$,
 $\left\langle e_{1}, \ldots, e_{k}\right\rangle$ path from x to y in $M S T$
$d_{M}(x, y)$
$=$ weight of shortest path from x to y in G
$\leq \sum e_{i} \leq\left|P_{v}\right| \max e_{i}=\Delta_{v}$

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$

summary:

Given a metric over a set P, we can efficiently construct a hierarchically well-balanced tree that $(n-1)$-approximates the metric.

$$
\Delta_{v}:=\left(\left|P_{v}\right|-1\right) w
$$

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$

summary:

Given a metric over a set P, we can efficiently construct a hierarchically well-balanced tree that $(n-1)$-approximates the metric.
alternative for metric space \mathbb{R}^{d} : shifted quadtree, with $\Delta_{v}=$ diameter of cell

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$

summary:

Given a metric over a set P, we can efficiently construct a hierarchically well-balanced tree that $(n-1)$-approximates the metric.
alternative for metric space \mathbb{R}^{d} : shifted quadtree, with $\Delta_{v}=$ diameter of cell

$$
d_{M}(p, q)=\|p-q\| \leq \Delta_{l c a\left(u_{p}, u_{q}\right)}=d_{H S T}(p, q)
$$

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$

summary:

Given a metric over a set P, we can efficiently construct a hierarchically well-balanced tree that $(n-1)$-approximates the metric.
alternative for metric space \mathbb{R}^{d} : shifted quadtree, with $\Delta_{v}=$ diameter of cell

$$
\begin{aligned}
d_{M}(p, q) & =\|p-q\| \leq \Delta_{l c a\left(u_{p}, u_{q}\right)}=d_{H S T}(p, q) \\
& \leq n^{O(1)}\|p-q\| \quad \text { (with high probability) }
\end{aligned}
$$

$d_{M} \leq d_{H S T} \leq(n-1) d_{M}$

summary:

Given a metric over a set P, we can efficiently construct a hierarchically well-balanced tree that $(n-1)$-approximates the metric.
alternative for metric space \mathbb{R}^{d} : shifted quadtree, with $\Delta_{v}=$ diameter of cell

$$
\begin{aligned}
d_{M}(p, q) & =\|p-q\| \leq \Delta_{l c a\left(u_{p}, u_{q}\right)}=d_{H S T}(p, q) \\
& \leq n^{O(1)}\|p-q\| \quad \text { (with high probability) } \\
& =n^{O(1)} d_{M}(p, q)
\end{aligned}
$$

Overview

Approximating a metric space by a hierarchical well-separated tree (HST)

 hierachical well-separated treessimple $(n-1)$-approximation
fast $n^{O(1)}$-approximation in \mathbb{R}^{d}

ANN via point location among balls

simple construction
handling a range of radii
ANN data structure based on HST

Point Location among balls

$b(p, r)=\{q \mid d(p, q) \leq r\}$ denotes a ball around point p with radius r

Point Location among balls

$b(p, r)=\{q \mid d(p, q) \leq r\}$ denotes a ball around point p with radius r
point set P in a metric space \mathcal{M}

Point Location among balls

$b(p, r)=\{q \mid d(p, q) \leq r\}$ denotes a ball around point p with radius r
point set P in a metric space \mathcal{M}

Point Location among balls

$b(p, r)=\{q \mid d(p, q) \leq r\}$ denotes a ball around point p with radius r

For a collection of balls $\mathcal{B}, \odot_{\mathcal{B}}(q)$ denotes the smallest ball containing q, or target ball for q

Point Location among balls

$b(p, r)=\{q \mid d(p, q) \leq r\}$ denotes a ball around point p with radius r

For a collection of balls $\mathcal{B}, \odot_{\mathcal{B}}(q)$ denotes the smallest ball containing q, or target ball for q

Point location among balls:
Given a collection of balls \mathcal{B} and a query point q, find the target ball $\odot_{\mathcal{B}}(q)$ of q

Point Location among balls

$b(p, r)=\{q \mid d(p, q) \leq r\}$ denotes a ball around point p with radius r

For a collection of balls $\mathcal{B}, \odot_{\mathcal{B}}(q)$ denotes the smallest ball containing q, or target ball for q

Point location among balls:
Given a collection of balls \mathcal{B} and a query point q, find the target ball $\odot_{\mathcal{B}}(q)$ of q

Relation $(1+\varepsilon)$-ANN and PLEB

Gaining some intuition:

Relation $(1+\varepsilon)$-ANN and PLEB

Gaining some intuition:

$$
r=d(q, p) \geq d(q, P)
$$

Relation $(1+\varepsilon)$-ANN and PLEB

Gaining some intuition:

$$
\begin{aligned}
& r=d(q, p) \geq d(q, P) \\
& r^{\prime}=d(q, s) \leq(1+\varepsilon) d(q, P)
\end{aligned}
$$

Relation $(1+\varepsilon)$-ANN and PLEB

Gaining some intuition:

$$
\begin{aligned}
& r=d(q, p) \geq d(q, P) \\
& r^{\prime}=d(q, s) \leq(1+\varepsilon) d(q, P)
\end{aligned}
$$

since $r \leq r^{\prime}$, we have $d(q, p) \leq(1+\varepsilon) d(q, P)$

Relation $(1+\varepsilon)$-ANN and PLEB

Gaining some intuition:

$$
\begin{aligned}
& r=d(q, p) \geq d(q, P) \\
& r^{\prime}=d(q, s) \leq(1+\varepsilon) d(q, P)
\end{aligned}
$$

since $r \leq r^{\prime}$, we have $d(q, p) \leq(1+\varepsilon) d(q, P)$
Choice of ball sizes matters!

Relation $(1+\varepsilon)$-ANN and PLEB

Gaining some intuition:

$$
\begin{aligned}
& r=d(q, p) \geq d(q, P) \\
& r^{\prime}=d(q, s) \leq(1+\varepsilon) d(q, P)
\end{aligned}
$$

since $r \leq r^{\prime}$, we have $d(q, p) \leq(1+\varepsilon) d(q, P)$
Choice of ball sizes matters!

Reduction

Reduction from ($1+\varepsilon$)-ANN to Point location among balls

define $\mathcal{U}(P, r)=\bigcup_{p \in P} b(p, r)$
union of balls of radius r

Reduction

Reduction from $(1+\varepsilon)$-ANN to Point location among balls

define $\quad \mathcal{U}(P, r)=\bigcup_{p \in P} b(p, r)$ union of balls of radius r

Reduction

Reduction from ($1+\varepsilon$)-ANN to Point location among balls
define $\quad \mathcal{U}(P, r)=\bigcup_{p \in P} b(p, r)$ union of balls of radius r

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$. For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$. For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Proof:

Let $s=n n(q, P)$ and $r=\|q-s\|=d(q, P)$.

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Proof:

Let $s=n n(q, P)$ and $r=\|q-s\|=d(q, P)$.

Pick i such that $(1+\varepsilon)^{i}<r \leq(1+\varepsilon)^{i+1}$.
We have that $q \in b\left(s,(1+\varepsilon)^{i+1}\right)$

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Proof:

Let $s=n n(q, P)$ and $r=\|q-s\|=d(q, P)$.
Pick i such that $(1+\varepsilon)^{i}<r \leq(1+\varepsilon)^{i+1}$.
We have that $q \in b\left(s,(1+\varepsilon)^{i+1}\right)$
It must be that the target ball has a radius $\leq(1+\varepsilon)^{i+1}$.
It cannot be smaller than r, or bigger than $(1+\varepsilon)^{i+1}$.

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Proof:

Let $s=n n(q, P)$ and $r=\|q-s\|=d(q, P)$.
Pick i such that $(1+\varepsilon)^{i}<r \leq(1+\varepsilon)^{i+1}$.
We have that $q \in b\left(s,(1+\varepsilon)^{i+1}\right)$
It must be that the target ball has a radius $\leq(1+\varepsilon)^{i+1}$.
It cannot be smaller than r, or bigger than $(1+\varepsilon)^{i+1}$.
It follows that $\|q-p\| \leq \operatorname{radius}\left(\odot_{\mathcal{B}}(q)\right) \leq(1+\varepsilon)^{i+1}<(1+\varepsilon) d(q, P)$

Reduction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Proof:

Let $s=n n(q, P)$ and $r=\|q-s\|=d(q, P)$.
Pick i such that $(1+\varepsilon)^{i}<r \leq(1+\varepsilon)^{i+1}$.
We have that $q \in b\left(s,(1+\varepsilon)^{i+1}\right)$
It must be that the target ball has a radius $\leq(1+\varepsilon)^{i+1}$.
It cannot be smaller than r, or bigger than $(1+\varepsilon)^{i+1}$.
It follows that $\|q-p\| \leq \operatorname{radius}\left(\odot_{\mathcal{B}}(q)\right) \leq(1+\varepsilon)^{i+1}<(1+\varepsilon) d(q, P)$

$$
p \text { is }(1+\varepsilon) \text {-ANN to } q!
$$

First ideas - simple construction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

First ideas - simple construction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

One issue.. .. $|\mathcal{B}|$ is unbounded!

First ideas - simple construction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

One issue.. .. $|\mathcal{B}|$ is unbounded!
Solution: limit the range of radii

First ideas - simple construction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

One issue.. .. $|\mathcal{B}|$ is unbounded!
Solution: limit the range of radii
Consider pair of points $u, v \in P$

First ideas - simple construction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

One issue.. .. $|\mathcal{B}|$ is unbounded!
Solution: limit the range of radii
Consider pair of points $u, v \in P$

1. if q much closer to u than to v : easy to decide e.g. if $d(q, u) \leq d(u, v) / 4$

First ideas - simple construction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

One issue.. .. $|\mathcal{B}|$ is unbounded!
Solution: limit the range of radii
Consider pair of points $u, v \in P$

1. if q much closer to u than to v : easy to decide e.g. if $d(q, u) \leq d(u, v) / 4$

First ideas - simple construction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

One issue.. .. $|\mathcal{B}|$ is unbounded!
Solution: limit the range of radii
Consider pair of points $u, v \in P$

1. if q much closer to u than to v : easy to decide e.g. if $d(q, u) \leq d(u, v) / 4$

2. if q very far from u and v : choice does not matter

First ideas - simple construction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

One issue.. .. $|\mathcal{B}|$ is unbounded!
Solution: limit the range of radii
Consider pair of points $u, v \in P$

1. if q much closer to u than to v : easy to decide e.g. if $d(q, u) \leq d(u, v) / 4$

2. if q very far from u and v : choice does not matter
i.e. if $d(q, u) \geq 2 d(u, v) / \varepsilon$

First ideas - simple construction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

Observations:

(1) We only need range of radii:

$$
r / d(u, v) \in[1 / 4,2 / \varepsilon]
$$

One issue.. .. $|\mathcal{B}|$ is unbounded!
Solution: limit the range of radii
Consider pair of points $u, v \in P$

1. if q much closer to u than to v : easy to decide
e.g. if $d(q, u) \leq d(u, v) / 4$
2. if q very far from u and v : choice does not matter
i.e. if $d(q, u) \geq 2 d(u, v) / \varepsilon$

First ideas - simple construction

Lemma: Let $\mathcal{B}=\bigcup_{i=-\infty}^{\infty} \mathcal{U}\left(P,(1+\varepsilon)^{i}\right)$.
For a query q, let p be the center of $\odot_{\mathcal{B}}(q)$. Then p is $(1+\varepsilon)$-ANN to q.

One issue.. .. $|\mathcal{B}|$ is unbounded!
Solution: limit the range of radii

Observations:

(1) We only need range of radii:

$$
r / d(u, v) \in[1 / 4,2 / \varepsilon]
$$

(2) need to avoid range dependent on pairs, otherwise $\Theta\left(n^{2}\right)$ disks

Consider pair of points $u, v \in P$

1. if q much closer to u than to v : easy to decide
e.g. if $d(q, u) \leq d(u, v) / 4$
2. if q very far from u and v : choice does not matter
i.e. if $d(q, u) \geq 2 d(u, v) / \varepsilon$

Handling a range of radii

Near neighbor data structure $\mathcal{D}(P, r)$

Handling a range of radii

Near neighbor data structure $\mathcal{D}(P, r)$
Decides given q, if

$$
\begin{aligned}
& d(q, P) \leq r, \text { or } \\
& d(q, P)>r
\end{aligned}
$$

If $d(q, P) \leq r$ it returns a point p s.t. $d(q, p) \leq r$

Handling a range of radii

Near neighbor data structure $\mathcal{D}(P, r)$
Decides given q, if

$$
\begin{aligned}
& d(q, P) \leq r, \text { or } \\
& d(q, P)>r
\end{aligned}
$$

If $d(q, P) \leq r$ it returns a point p s.t. $d(q, p) \leq r$
A query can be resolved by iteratively checking for each ball in $\mathcal{U}(P, r)$ if it contains q

Handling a range of radii

Near neighbor data structure $\mathcal{D}(P, r)$
Given interval $[a, b]$, Let $\mathcal{N}_{i}=\mathcal{D}\left(P, r_{i}\right)$ where $r_{i}=\min \left((1+\varepsilon)^{i} a, b\right)$ for $i=0, \ldots, M=\left\lceil\log _{1+\varepsilon}\left(\frac{b}{a}\right)\right\rceil$

Handling a range of radii

Near neighbor data structure $\mathcal{D}(P, r)$
Given interval $[a, b]$, Let $\mathcal{N}_{i}=\mathcal{D}\left(P, r_{i}\right)$ where $r_{i}=\min \left((1+\varepsilon)^{i} a, b\right)$ for $i=0, \ldots, M=\left\lceil\log _{1+\varepsilon}\left(\frac{b}{a}\right)\right\rceil$

Handling a range of radii

Near neighbor data structure $\mathcal{D}(P, r)$
Given interval $[a, b]$, Let $\mathcal{N}_{i}=\mathcal{D}\left(P, r_{i}\right)$ where $r_{i}=\min \left((1+\varepsilon)^{i} a, b\right)$ for $i=0, \ldots, M=\left\lceil\log _{1+\varepsilon}\left(\frac{b}{a}\right)\right\rceil$

Interval near neighbor data structure $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ Let $\hat{\mathcal{I}}(P, a, b, \varepsilon)=\left\{\mathcal{N}_{0}, \ldots, \mathcal{N}_{M}\right\}$

Handling a range of radii

Interval near neighbor data structure $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ Lemma: Given $P, a \leq b$ and $\varepsilon>0$, one can construct $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ such that: (A) $\hat{\mathcal{I}}$ is made out of $O\left(\varepsilon^{-1} \log (b / a)\right)$ nn structures, and (B) given a query point q it can decide if:

Handling a range of radii

Interval near neighbor data structure $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ Lemma: Given $P, a \leq b$ and $\varepsilon>0$, one can construct $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ such that: (A) $\hat{\mathcal{I}}$ is made out of $O\left(\varepsilon^{-1} \log (b / a)\right)$ nn structures, and (B) given a query point q it can decide if:

1. $d(q, P) \leq a$, or
2. $d(q, P)>b$ and otherwise
3. Return a radius r and point p s.t.

$$
d(q, P) \leq r=d(q, p) \leq(1+\varepsilon) d(q, P)
$$

Handling a range of radii

Interval near neighbor data structure $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ Lemma: Given $P, a \leq b$ and $\varepsilon>0$, one can construct $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ such that: (A) $\hat{\mathcal{I}}$ is made out of $O\left(\varepsilon^{-1} \log (b / a)\right)$ nn structures, and (B) given a query point q it can decide if:

1. $d(q, P) \leq a$, or
2. $d(q, P)>b$ and otherwise
3. Return a radius r and point p s.t.

$$
d(q, P) \leq r=d(q, p) \leq(1+\varepsilon) d(q, P)
$$

number of queries required is $O\left(\log \left(\varepsilon^{-1} \log (b / a)\right)\right)$

Handling a range of radii

Interval near neighbor data structure $\hat{\mathcal{I}}(P, a, b, \varepsilon)$
Lemma: Given $P, a \leq b$ and $\varepsilon>0$, one can construct $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ such that: (A) $\hat{\mathcal{I}}$ is made out of $O\left(\varepsilon^{-1} \log (b / a)\right)$ nn structures, and (B) given a query point q it can decide if:

1. $d(q, P) \leq a$, or
2. $d(q, P)>b$ and otherwise
3. Return a radius r and point p s.t.

$$
d(q, P) \leq r=d(q, p) \leq(1+\varepsilon) d(q, P)
$$

number of queries required is $O\left(\log \left(\varepsilon^{-1} \log (b / a)\right)\right)$

Recall, $M=\left\lceil\log _{1+\varepsilon}(b / a)\right\rceil$

Handling a range of radii

Interval near neighbor data structure $\hat{\mathcal{I}}(P, a, b, \varepsilon)$
Lemma: Given $P, a \leq b$ and $\varepsilon>0$, one can construct $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ such that: (A) $\hat{\mathcal{I}}$ is made out of $O\left(\varepsilon^{-1} \log (b / a)\right)$ nn structures, and (B) given a query point q it can decide if:

1. $d(q, P) \leq a$, or
2. $d(q, P)>b$ and otherwise
3. Return a radius r and point p s.t.

$$
d(q, P) \leq r=d(q, p) \leq(1+\varepsilon) d(q, P)
$$

number of queries required is $O\left(\log \left(\varepsilon^{-1} \log (b / a)\right)\right)$

Recall, $M=\left\lceil\log _{1+\varepsilon}(b / a)\right\rceil$
$O(\log (b / a) / \varepsilon)$ nn structures

Handling a range of radii

Interval near neighbor data structure $\hat{\mathcal{I}}(P, a, b, \varepsilon)$
Lemma: Given $P, a \leq b$ and $\varepsilon>0$, one can construct $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ such that: (A) $\hat{\mathcal{I}}$ is made out of $O\left(\varepsilon^{-1} \log (b / a)\right)$ nn structures, and (B) given a query point q it can decide if:

1. $d(q, P) \leq a$, or
2. $d(q, P)>b$ and otherwise
3. Return a radius r and point p s.t.

$$
d(q, P) \leq r=d(q, p) \leq(1+\varepsilon) d(q, P)
$$

number of queries required is $O\left(\log \left(\varepsilon^{-1} \log (b / a)\right)\right)$

Recall, $M=\left\lceil\log _{1+\varepsilon}(b / a)\right\rceil$ $O(\log (b / a) / \varepsilon)$ nn structures
number of queries can be achieved by doing a binary search on the radius:
$O\left(\log \left(\varepsilon^{-1} \log (b / a)\right)\right)$

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P
recall:

- Each vertex v has a label $\Delta_{v} \geq 0$.
- $\Delta_{v}=0$ if v is a leaf.
- If u is a child of v, then $\Delta_{v} \geq \Delta_{u}$
- $\Delta_{l c a(u, v)}$ denotes the t-approximated distance between two leaves u and v

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P
recall:

- Each vertex v has a label $\Delta_{v} \geq 0$.
- $\Delta_{v}=0$ if v is a leaf.
- If u is a child of v, then $\Delta_{v} \geq \Delta_{u}$
- $\Delta_{l c a(u, v)}$ denotes the t-approximated distance between two leaves u and v
- Each vertex v has a representative leaf repr v

- repr $_{u} \in\left\{\right.$ repr $_{v} \mid \mathrm{v}$ is a child of $\left.u\right\}$

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P

Recursively build search tree T (top-down):

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P

Recursively build search tree T (top-down):
Given subtree S of H, create searchtree $T(S)$ rooted at node $v=v(S) \in T$

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P

Recursively build search tree T (top-down):
Given subtree S of H, create searchtree $T(S)$ rooted at node $v=v(S) \in T$

Let $P^{v}=P(S)$ be the set of points/representatives of S

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P

Recursively build search tree T (top-down):
Given subtree S of H, create searchtree $T(S)$ rooted at node $v=v(S) \in T$

Let $P^{v}=P(S)$ be the set of points/representatives of S Let $u^{v} \in V(S)$ be the separator of S

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P

Recursively build search tree T (top-down):
Given subtree S of H, create searchtree $T(S)$ rooted at node $v=v(S) \in T$

Let $P^{v}=P(S)$ be the set of points/representatives of S
Let $u^{v} \in V(S)$ be the separator of S
Removing a separator node breaks a (sub)tree T into connected components of size at most $|V(T)| / 2$

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P

Recursively build search tree T (top-down):
Given subtree S of H, create searchtree $T(S)$ rooted at node $v=v(S) \in T$

Let $P^{v}=P(S)$ be the set of points/representatives of S
Let $u^{v} \in V(S)$ be the separator of S
Removing a separator node breaks a (sub)tree T into connected components of size at most $|V(T)| / 2$

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P

Recursively build search tree T (top-down):
Given subtree S of H, create searchtree $T(S)$ rooted at node $v=v(S) \in T$

Let $P^{v}=P(S)$ be the set of points/representatives of S
Let $u^{v} \in V(S)$ be the separator of S
build and store $\hat{\mathcal{I}}_{v}=\hat{\mathcal{I}}\left(P^{v}, r_{v}, R_{v}, \varepsilon / 4\right)$ in node v

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P

Recursively build search tree T (top-down):
Given subtree S of H, create searchtree $T(S)$ rooted at node $v=v(S) \in T$

Let $P^{v}=P(S)$ be the set of points/representatives of S
Let $u^{v} \in V(S)$ be the separator of S
build and store $\hat{\mathcal{I}}_{v}=\hat{\mathcal{I}}\left(P^{v}, r_{v}, R_{v}, \varepsilon / 4\right)$ in node v

$$
r_{v}=\frac{\Delta\left(u^{v}\right)}{4 t} \text { and } R_{v}=\mu \Delta\left(u^{v}\right)
$$

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P

Recursively build search tree T (top-down):
Given subtree S of H, create searchtree $T(S)$ rooted at node $v=v(S) \in T$

Let $P^{v}=P(S)$ be the set of points/representatives of S
Let $u^{v} \in V(S)$ be the separator of S
build and store $\hat{\mathcal{I}}_{v}=\hat{\mathcal{I}}\left(P^{v}, r_{v}, R_{v}, \varepsilon / 4\right)$ in node v

$$
r_{v}=\frac{\Delta\left(u^{v}\right)}{4 t} \text { and } R_{v}=\mu \Delta\left(u^{v}\right)
$$

The ANN data structure

Given: set of points P and a t-approximate (B)HST H on P

Recursively build search tree T (top-down):
Given subtree S of H, create searchtree $T(S)$ rooted at node $v=v(S) \in T$

Let $P^{v}=P(S)$ be the set of points/representatives of S
Let $u^{v} \in V(S)$ be the separator of S
build and store $\hat{\mathcal{I}}_{v}=\hat{\mathcal{I}}\left(P^{v}, r_{v}, R_{v}, \varepsilon / 4\right)$ in node v

$$
r_{v}=\frac{\Delta\left(u^{v}\right)}{4 t} \text { and } R_{v}=\mu \Delta\left(u^{v}\right)
$$

$\hat{\mathcal{I}}_{v}$ can be used to determine search path in T

The ANN data structure

The ANN data structure

The ANN data structure

The ANN data structure

The ANN data structure

The ANN data structure

$\hat{\mathcal{I}}_{v}=\hat{\mathcal{I}}\left(P^{v}, r_{v}, R_{v}, \varepsilon / 4\right)$ stored in node v

$$
r_{v}=\frac{\Delta\left(u^{v}\right)}{4 t} \text { and } R_{v}=\mu \Delta\left(u^{v}\right)
$$

A query into $\hat{\mathcal{I}}_{v}$ results in one of three cases:

The ANN data structure

$\hat{\mathcal{I}}_{v}=\hat{\mathcal{I}}\left(P^{v}, r_{v}, R_{v}, \varepsilon / 4\right)$ stored in node v

$$
r_{v}=\frac{\Delta\left(u^{v}\right)}{4 t} \text { and } R_{v}=\mu \Delta\left(u^{v}\right)
$$

The ANN data structure

$\hat{\mathcal{I}}_{v}=\hat{\mathcal{I}}\left(P^{v}, r_{v}, R_{v}, \varepsilon / 4\right)$ stored in node v

$$
r_{v}=\frac{\Delta\left(u^{v}\right)}{4 t} \text { and } R_{v}=\mu \Delta\left(u^{v}\right)
$$

The ANN data structure

$\hat{\mathcal{I}}_{v}=\hat{\mathcal{I}}\left(P^{v}, r_{v}, R_{v}, \varepsilon / 4\right)$ stored in node v

$$
r_{v}=\frac{\Delta\left(u^{v}\right)}{4 t} \text { and } R_{v}=\mu \Delta\left(u^{v}\right)
$$

$$
H
$$

A query into $\hat{\mathcal{I}}_{v}$ results in one of three cases:

- $d\left(q, P^{v}\right) \leq r_{v}$: Then $q \in \mathcal{U}\left(P^{v}, r_{v}\right)$ and the datastructure returns a point $p \in P^{v}$ with $d(q, p) \leq r_{v}$.
Recurse into the subtree containing p
- $d\left(q, P^{v}\right) \in\left(r_{v}, R_{v}\right]$: Then the query finds a ($1+\varepsilon / 4$)-ANN point $s \in P^{v}$ and returns it as the answer to the query
- $d\left(q, P^{v}\right)>R_{v}$:

Then the search continues recursively in $v_{\text {out }}$

Correctness

Lemma: The point returned by the data structure is a $(1+\varepsilon)$-ANN to the query point q in P.

Proof (sketch, case 1):

$d\left(q, P^{v}\right) \leq r_{v}$; recurse into subtree with returned point p.

Correctness

Lemma: The point returned by the data structure is a $(1+\varepsilon)$-ANN to the query point q in P.

Proof (sketch, case 1):

$d\left(q, P^{v}\right) \leq r_{v}$; recurse into subtree with returned point p.
We need to show that the algorithm recurses into a subtree which contains a $(1+\varepsilon)$-ANN point. If the algorithm continues to v_{L}, we have that $d\left(P_{L}^{v}, P^{v} \backslash P_{L}^{v}\right) \geq \Delta\left(u^{v}\right) / t$. For $q_{L}=n n\left(q, P_{L}^{v}\right)$, by the triangle inequality we have that

$$
\begin{array}{r}
d\left(q, P_{v} \backslash P_{L}^{v}\right) \geq d\left(q_{L}, P^{v} \backslash P_{L}^{v}\right)-d\left(q, q_{L}\right) \geq \frac{\Delta\left(u^{v}\right)}{t}-r_{v}>\frac{\Delta\left(u^{v}\right)}{2 t}>r_{v} \\
r_{v}=\Delta\left(u^{v}\right) / 4 t
\end{array}
$$

Space Complexity

Lemma: For $t=n^{O(1)}$, the data structure is made out of $O\left(\frac{n}{\varepsilon} \log ^{2} n\right)$ balls. Proof (sketch):

Space Complexity

Lemma: for $t=n^{O(1)}$, the data structure is made out of $O\left(\frac{n}{\varepsilon} \log ^{2} n\right)$ balls.

Proof (sketch):

Let $U\left(n_{v}\right)$ be the number of balls used in $\hat{\mathcal{I}}_{v}$, we have $\mu=O\left(\varepsilon^{-1} \log n\right)$ and $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ is made out of $O\left(\frac{n}{\varepsilon} \log (b / a)\right)$ balls (previous slide).

Space Complexity

Lemma: For $t=n^{O(1)}$, the data structure is made out of $O\left(\frac{n}{\varepsilon} \log ^{2} n\right)$ balls.

Proof (sketch):

Let $U\left(n_{v}\right)$ be the number of balls used in $\hat{\mathcal{I}}_{v}$, we have $\mu=O\left(\varepsilon^{-1} \log n\right)$ and $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ is made out of $O\left(\frac{n}{\varepsilon} \log (b / a)\right)$ balls (previous slide).
we have:

$$
U\left(n_{v}\right)=O\left(\frac{n_{v}}{\varepsilon} \log \frac{R_{v}}{r_{v}}\right)=O\left(\frac{n_{v}}{\varepsilon} \log \left(\frac{t \log n}{\varepsilon}\right)\right)
$$

Space Complexity

Lemma: For $t=n^{O(1)}$, the data structure is made out of $O\left(\frac{n}{\varepsilon} \log ^{2} n\right)$ balls.

Proof (sketch):

Let $U\left(n_{v}\right)$ be the number of balls used in $\hat{\mathcal{I}}_{v}$, we have $\mu=O\left(\varepsilon^{-1} \log n\right)$ and $\hat{\mathcal{I}}(P, a, b, \varepsilon)$ is made out of $O\left(\frac{n}{\varepsilon} \log (b / a)\right)$ balls (previous slide).
we have:

$$
U\left(n_{v}\right)=O\left(\frac{n_{v}}{\varepsilon} \log \frac{R_{v}}{r_{v}}\right)=O\left(\frac{n_{v}}{\varepsilon} \log \left(\frac{t \log n}{\varepsilon}\right)\right)
$$

For the total number of balls, we get the recurrence $B(n)=U(n)+B\left(n_{L}\right)+B\left(n_{R}\right)+B\left(n_{\text {out }}\right)$
count each occurrence of point as repr. (overall $2 n$)
(we have $n_{L}, n_{R}, n_{\text {out }} \leq n / 2+1$ and $B\left(n_{L}\right)+B\left(n_{R}\right)+B\left(n_{\text {out }}\right)=n$). This results in $B(2 n)=O\left(\varepsilon^{-1} n \log n \log \left(\varepsilon^{-1} t \log n\right)\right)=O\left((n / \varepsilon) \log ^{2} n\right)$

Number of Queries

Lemma: For $t=n^{O(1)}$, the ANN-query algorithm performs
$O(\log (n / \varepsilon))$ near neighbor queries

Proof (sketch):

Number of Queries

Lemma: For $t=n^{O(1)}$, the ANN-query algorithm performs
$O(\log (n / \varepsilon))$ near neighbor queries

Proof (sketch):

For every internal node v on the search path π in T corresponds to a situation where $d(q, P) \leq r_{v}$ or $d(q, P)>R_{v}$, which can be decided by two nearest neighbor queries.

In the final node u in π, the search algorithm resolves the query using $O\left(\log \frac{\log R_{v} / r_{v}}{\varepsilon}\right)$ $=O(\log (1 / \varepsilon)+\log \log n)$ near neighbor queries.

Since the depth of the tree is $O(\log n)$, the total number of queries becomes $O(\log n+\log (1 / \varepsilon)+\log \log n)=O(\log n / \varepsilon)$.

Summary

Approximating a metric space by a hierarchical well-separated tree (HST)

 hierachical well-separated treessimple $(n-1)$-approximation
fast $n^{O(1)}$-approximation in \mathbb{R}^{d}

ANN via point location among balls

simple construction
handling a range of radii
ANN data structure based on HST
. . . and next time
point location among approximate balls
approximate Voronoi diagrams

