
Approximate Nearest Neighbors
Low Dimensions

Welcome!



Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
(4. Low-quality approximation)



Many Applications
https://en.wikipedia.org/wiki/

Nearest_neighbor_search
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Exact nearest neighbor
Problem statement

Preprocess set P of n points in IRd such that
given a query point q, we can find the closest point in P to q quickly.

notation:
Nearest neighbor of q: nn(q) = nn(q, P)
d(q, P) = ∥q− nn(q)∥
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Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(n⌈d/2⌉ + n log n) time.
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Exact nearest neighbor

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(n⌈d/2⌉ + n log n) time.

Faster approximation?

How about quadtrees?
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Approximate nearest neighbor (Bounded spread)

s ∈ P is a (1 + ε)-approximate nearest neighbor (ANN) of q
if ||q− s|| ≤ (1 + ε)d(q, P).

Spread: Φ(P) = maxp,q∈P ||p−q||
minp,q∈P,p̸=q ||p−q||

• P ⊂ [0, 1]d, diameter(P) = Ω(1), Φ(P) = O(nc), for constant c.
• T : quadtree of P
• repu ∈ P: representative of node u ∈ T
• ε > 0
• query point q

Setting:
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Approximate nearest neighbor (Bounded spread)

Questions:
How long does point location
take in a quadtree? How long in
a compressed quadtree?
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Ideas for ANN?
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Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr
ignore cell w if ||q−repw|| − diam(□w) > (1− ε/2)rcurr
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Question: How do we analyze the
running time?
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Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
# such cells = O(height) = O(logΦ(P))

2. ends when cells have size εd(q, P)

cell size
≈ d(q, P)

cell size
≈ εd(q, P)

# cells in last levels = O(1/εd)

# = O(1/εd)



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i ≥ (ε/4)r



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i ≥ (ε/4)r

only levels with i ≤ −⌈log((ε/4)r)/
√
d⌉ considered
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Running time
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Running time
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low-quality approximation → unbounded spread

Assume we can compute p that is 4n-ANN of q.

R := ∥p− q∥, L := ⌊log R⌋

Algorithm

1. Compute 4n-approximation

2. Find cells of grid G2L at distance ≤ R from q

3. Use algorithm for bounded spread (extended to compressed
quadtrees) on these cells

in short:
running time (without step 1) = O(1/ε2 + log(R/r)) = O(1/ε2 + log n)



Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation:

ring separator tree
shifting


