Approximate Nearest Neighbors

Low Dimensions

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
(4. Low-quality approximation)

Many Applications

- Pattern recognition - in particular for optical character recognition
- Statistical classification - see k-nearest neighbor algorithm
- Computer vision
- Computational geometry - see Closest pair of points problem
- Databases - e.g. content-based image retrieval
- Coding theory - see maximum likelihood decoding
- Data compression - see MPEG-2 standard
- Robotic sensing ${ }^{[2]}$
- Recommendation systems, e.g. see Collaborative filtering
- Internet marketing - see contextual advertising and behavioral targeting
- DNA sequencing
- Spell checking - suggesting correct spelling
- Plagiarism detection
- Similarity scores for predicting career paths of professional athletes.
- Cluster analysis - assignment of a set of observations into subsets (called clusters) so that observations in the same cluster are similar in some sense, usually based on Euclidean distance
- Chemical similarity
- Sampling-based motion planning

Exact nearest neighbor

Problem statement

Preprocess set P of n points in \mathbb{R}^{d} such that given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor

Problem statement

Preprocess set P of n points in \mathbb{R}^{d} such that given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor

Problem statement

Preprocess set P of n points in \mathbb{R}^{d} such that given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor

Problem statement

Preprocess set P of n points in \mathbb{R}^{d} such that given a query point q, we can find the closest point in P to q quickly.
notation:
Nearest neighbor of $q: n n(q)=n n(q, P)$ $d(q, P)=\|q-n n(q)\|$

Exact nearest neighbor

Exact nearest neighbor

Voronoi diagram

Exact nearest neighbor

Voronoi diagram

Exact nearest neighbor

Voronoi diagram

Computing the Voronoi diagram of P and preprocessing it for point-location queries requires roughly $O\left(n^{\lceil d / 2\rceil}+n \log n\right)$ time.

Exact nearest neighbor

Voronoi diagram

Computing the Voronoi diagram of P and preprocessing it for point-location queries requires roughly $O\left(n^{\lceil d / 2\rceil}+n \log n\right)$ time.

Faster approximation?

Exact nearest neighbor

Computing the Voronoi diagram of P and preprocessing it for point-location queries requires roughly $O\left(n^{\lceil d / 2\rceil}+n \log n\right)$ time.

Faster approximation?
How about quadtrees?

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

```
s\inP is a (1 + &)-approximate nearest neighbor (ANN) of q
    if ||-s|
```


Approximate nearest neighbor (Bounded spread)

$s \in P$ is a $(1+\varepsilon)$-approximate nearest neighbor (ANN) of q if $\|q-s\| \leq(1+\varepsilon) d(q, P)$.

Spread: $\Phi(P)=\frac{\max _{p, q \in P}\|p-q\|}{\min _{p, q \in p, p=a}\|p-q\|}$

Approximate nearest neighbor (Bounded spread)

$s \in P$ is a $(1+\varepsilon)$-approximate nearest neighbor (ANN) of q if $\|q-s\| \leq(1+\varepsilon) d(q, P)$.

Spread: $\Phi(P)=\frac{\max _{p, q \in P}\|p-q\|}{\min _{p, q \in P, p=q}\|p-q\|}$

Setting:

- $P \subset[0,1]^{d}$, diameter $(P)=\Omega(1), \Phi(P)=O\left(n^{c}\right)$, for constant c.
- \mathcal{T} : quadtree of P
- $\operatorname{rep}_{u} \in P$: representative of node $u \in \mathcal{T}$
- $\varepsilon>0$
- query point q

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Questions:

How long does point location
take in a quadtree? How long in
a compressed quadtree?

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Ideas for ANN?

Approximate nearest neighbor (Bounded spread)

Algorithm ideas
recursive: start at root (like point location).

Approximate nearest neighbor (Bounded spread)

Algorithm ideas
recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly
 could contain $s \in P$ with $\|q-s\|<(1-\varepsilon / 2) r_{\text {curr }}$

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly
 could contain $s \in P$ with $\|q-s\|<(1-\varepsilon / 2) r_{\text {curr }}$

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly

$$
\begin{aligned}
& \text { could contain } s \in P \text { with }\|q-s\|<(1-\varepsilon / 2) r_{\text {curr }} \\
& \text { ignore cell } w \text { if }\left\|q-\operatorname{rep}_{w}\right\|-\operatorname{diam}\left(\square_{w}\right)>(1-\varepsilon / 2) r_{\text {curr }}
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{0}=\{1\} \\
& \text { rep }_{1}=2 \\
& p=2
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{1}=\{2,3,4,5\} \\
& \mathrm{rep}_{3}=7, \mathrm{rep}_{4}=10, \mathrm{rep}_{5}=15 \\
& p=2
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{1}=\{2,3,4,5\} \\
& \mathrm{rep}_{3}=7, \mathrm{rep}_{4}=10, \mathrm{rep}_{5}=15 \\
& p=10
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{2}=\{8,10,11,14\} \\
& \operatorname{rep}_{11}=21, \operatorname{rep}_{14}=26 \\
& p=10
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{2}=\{8,10,11,14\} \\
& \operatorname{rep}_{11}=21, \operatorname{rep}_{14}=26 \\
& p=21
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{3}=\{21,19,26\} \\
& p=21
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{3}=\{21,19,26\} \\
& p=19
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

Question: How do we analyze the running time?

Approximate nearest neighbor (Bounded spread)

Running time main ideas

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells $>d(q, P)$ only $O(1)$ cells per level

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells $>d(q, P)$ only $O(1)$ cells per level $\#$ such cells $=O($ height $)=O(\log \Phi(P))$

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells $>d(q, P)$ only $O(1)$ cells per level $\#$ such cells $=O($ height $)=O(\log \Phi(P))$
2. ends when cells have size $\varepsilon d(q, P)$

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells $>d(q, P)$ only $O(1)$ cells per level $\#$ such cells $=O($ height $)=O(\log \Phi(P))$
2. ends when cells have size $\varepsilon d(q, P)$ \# cells in last levels $=O\left(1 / \varepsilon^{d}\right)$

Approximate nearest neighbor (Bounded spread)

Running time
$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-r e p_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-r e p_{w}\right\|-(\varepsilon / 4) r$

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-r e p_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-r e p_{w}\right\|-(\varepsilon / 4) r$

$$
\geq r_{\text {curr }}-(\varepsilon / 4) r_{\text {curr }} \geq(1-\varepsilon / 4) r_{\text {curr }}
$$

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-r e p_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-r e p_{w}\right\|-(\varepsilon / 4) r$

$$
\geq r_{\text {curr }}-(\varepsilon / 4) r_{\text {curr }} \geq(1-\varepsilon / 4) r_{\text {curr }}
$$

side length at depth $i: 2^{-i}$

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-\operatorname{rep}_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-\operatorname{rep}_{w}\right\|-(\varepsilon / 4) r$

$$
\geq r_{\text {curr }}-(\varepsilon / 4) r_{\text {curr }} \geq(1-\varepsilon / 4) r_{\text {curr }}
$$

side length at depth $i: 2^{-i}$
diameter at depth $i: \sqrt{d} 2^{-i}$

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-\operatorname{rep}_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-\operatorname{rep}_{w}\right\|-(\varepsilon / 4) r$

$$
\geq r_{\text {curr }}-(\varepsilon / 4) r_{\text {curr }} \geq(1-\varepsilon / 4) r_{\text {curr }}
$$

side length at depth $i: 2^{-i}$
diameter at depth $i: \sqrt{d} 2^{-i} \geq(\varepsilon / 4) r$

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-\operatorname{rep}_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-\operatorname{rep}_{w}\right\|-(\varepsilon / 4) r$

$$
\geq r_{\text {curr }}-(\varepsilon / 4) r_{\text {curr }} \geq(1-\varepsilon / 4) r_{\text {curr }}
$$

side length at depth $i: 2^{-i}$
diameter at depth $i: \sqrt{d} 2^{-i} \geq(\varepsilon / 4) r$
only levels with $i \leq-\lceil\log ((\varepsilon / 4) r) / \sqrt{d}\rceil$ considered

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, r e p_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, \operatorname{rep}_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$
iteration $i+1$: only cells at distance $r_{\text {curr }} \leq \ell_{i}$ to q considered.

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, \operatorname{rep}_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$
iteration $i+1$: only cells at distance $r_{\text {curr }} \leq \ell_{i}$ to q considered.
How many? (upper bound)

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, r e p_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$
iteration $i+1$: only cells at distance $r_{\text {curr }} \leq \ell_{i}$ to q considered.

How many? (upper bound)

at most $n_{i}=\left(2\left\lceil\frac{\ell_{i}}{2^{-i-1}}\right\rceil\right)^{d}$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, r e p_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$
iteration $i+1$: only cells at distance $r_{\text {curr }} \leq \ell_{i}$ to q considered.

How many? (upper bound)

at most $n_{i}=\left(2\left\lceil\frac{\ell_{i}}{2^{-i-1}}\right\rceil\right)^{d}=O\left(\left(1+\frac{r+\sqrt{d 2}-i}{2^{-i-1}}\right)^{d}\right)$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, \operatorname{rep}_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$
iteration $i+1$: only cells at distance $r_{\text {curr }} \leq \ell_{i}$ to q considered.

How many? (upper bound)

$$
\text { at } \begin{aligned}
\operatorname{most} n_{i}=\left(2\left\lceil\frac{\ell_{i}}{2^{-i-1}}\right\rceil\right)^{d} & =O\left(\left(1+\frac{r+\sqrt{d} 2^{-i}}{2^{-i-1}}\right)^{d}\right) \\
& =O\left(1+\left(2^{i} r\right)^{d}\right)
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

$$
\sum_{i=0}^{h} n_{i}=O\left(h+2^{h} r\right)=O\left(-\log (\varepsilon r)+1 / \varepsilon^{d}\right)
$$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

$$
\begin{aligned}
\sum_{i=0}^{h} n_{i}=O\left(h+2^{h} r\right) & =O\left(-\log (\varepsilon r)+1 / \varepsilon^{d}\right) \\
& =O\left(\log (1 / r)+1 / \varepsilon^{d}\right)
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

$$
\begin{aligned}
\sum_{i=0}^{h} n_{i}=O\left(h+2^{h} r\right) & =O\left(-\log (\varepsilon r)+1 / \varepsilon^{d}\right) \\
& =O\left(\log (1 / r)+1 / \varepsilon^{d}\right)
\end{aligned}
$$

Alternative bound on $i: i \leq \log \Phi(P)$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

$$
\begin{aligned}
\sum_{i=0}^{h} n_{i}=O\left(h+2^{h} r\right) & =O\left(-\log (\varepsilon r)+1 / \varepsilon^{d}\right) \\
& =O\left(\log (1 / r)+1 / \varepsilon^{d}\right)
\end{aligned}
$$

Alternative bound on $i: i \leq \log \Phi(P)$

Summary:

A $(1+\varepsilon)$-ANN query on a quadtree takes $O\left(1 / \varepsilon^{d}+\log \Phi(P)\right)$ time.

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

$$
\begin{aligned}
\sum_{i=0}^{h} n_{i}=O\left(h+2^{h} r\right) & =O\left(-\log (\varepsilon r)+1 / \varepsilon^{d}\right) \\
& =O\left(\log (1 / r)+1 / \varepsilon^{d}\right)
\end{aligned}
$$

Alternative bound on $i: i \leq \log \Phi(P)$
Summary:
A $(1+\varepsilon)$-ANN query on a quadtree takes $O\left(1 / \varepsilon^{d}+\log \Phi(P)\right)$ time.

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation

low-quality approximation \rightarrow unbounded spread

Assume we can compute p that is $4 n$-ANN of q.

low-quality approximation \rightarrow unbounded spread

Assume we can compute p that is $4 n-\mathrm{ANN}$ of q.

$$
R:=\|p-q\|, L:=\lfloor\log R\rfloor
$$

Algorithm

1. Compute $4 n$-approximation
2. Find cells of grid $G_{2^{\iota}}$ at distance $\leq R$ from q
3. Use algorithm for bounded spread (extended to compressed quadtrees) on these cells

low-quality approximation \rightarrow unbounded spread

Assume we can compute p that is $4 n$-ANN of q.

$$
R:=\|p-q\|, L:=\lfloor\log R\rfloor
$$

Algorithm

1. Compute $4 n$-approximation
2. Find cells of grid $G_{2^{\llcorner }}$at distance $\leq R$ from q
3. Use algorithm for bounded spread (extended to compressed quadtrees) on these cells

in short:

running time $($ without step 1$)=O\left(1 / \varepsilon^{2}+\log (R / r)\right)=O\left(1 / \varepsilon^{2}+\log n\right)$

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation:
ring separator tree
shifting
