
Approximate Nearest Neighbors
Low Dimensions

Welcome!

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
(4. Low-quality approximation)

Many Applications
https://en.wikipedia.org/wiki/

Nearest_neighbor_search

Exact nearest neighbor
Problem statement

Preprocess set P of n points in IRd such that
given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor
Problem statement

Preprocess set P of n points in IRd such that
given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor
Problem statement

Preprocess set P of n points in IRd such that
given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor
Problem statement

Preprocess set P of n points in IRd such that
given a query point q, we can find the closest point in P to q quickly.

notation:
Nearest neighbor of q: nn(q) = nn(q, P)
d(q, P) = ∥q− nn(q)∥

Exact nearest neighbor

Exact nearest neighbor

Voronoi diagram

Exact nearest neighbor

Voronoi diagram

Exact nearest neighbor

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(n⌈d/2⌉ + n log n) time.

Voronoi diagram

Exact nearest neighbor

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(n⌈d/2⌉ + n log n) time.

Voronoi diagram

Faster approximation?

Exact nearest neighbor

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(n⌈d/2⌉ + n log n) time.

Faster approximation?

How about quadtrees?

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

s ∈ P is a (1 + ε)-approximate nearest neighbor (ANN) of q
if ||q− s|| ≤ (1 + ε)d(q, P).

Approximate nearest neighbor (Bounded spread)

s ∈ P is a (1 + ε)-approximate nearest neighbor (ANN) of q
if ||q− s|| ≤ (1 + ε)d(q, P).

Spread: Φ(P) = maxp,q∈P ||p−q||
minp,q∈P,p̸=q ||p−q||

Approximate nearest neighbor (Bounded spread)

s ∈ P is a (1 + ε)-approximate nearest neighbor (ANN) of q
if ||q− s|| ≤ (1 + ε)d(q, P).

Spread: Φ(P) = maxp,q∈P ||p−q||
minp,q∈P,p̸=q ||p−q||

• P ⊂ [0, 1]d, diameter(P) = Ω(1), Φ(P) = O(nc), for constant c.
• T : quadtree of P
• repu ∈ P: representative of node u ∈ T
• ε > 0
• query point q

Setting:

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Questions:
How long does point location
take in a quadtree? How long in
a compressed quadtree?

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

Ideas for ANN?

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)

q

p rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr
ignore cell w if ||q−repw|| − diam(□w) > (1− ε/2)rcurr

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A0 = {1}
rep1 = 2
p = 2

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A1 = {2, 3, 4, 5}
rep3 = 7, rep4 = 10, rep5 = 15
p = 2

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A1 = {2, 3, 4, 5}
rep3 = 7, rep4 = 10, rep5 = 15
p = 10

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A2 = {8, 10, 11, 14}
rep11 = 21, rep14 = 26
p = 10

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A2 = {8, 10, 11, 14}
rep11 = 21, rep14 = 26
p = 21

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A3 = {21, 19, 26}

p = 21

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A3 = {21, 19, 26}

p = 19

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

Question: How do we analyze the
running time?

Approximate nearest neighbor (Bounded spread)

Running time main ideas

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
such cells = O(height) = O(logΦ(P))

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
such cells = O(height) = O(logΦ(P))

2. ends when cells have size εd(q, P)

cell size
≈ d(q, P)

cell size
≈ εd(q, P)

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
such cells = O(height) = O(logΦ(P))

2. ends when cells have size εd(q, P)

cell size
≈ d(q, P)

cell size
≈ εd(q, P)

cells in last levels = O(1/εd)

= O(1/εd)

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i ≥ (ε/4)r

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
∥q− repw∥ − diam(σw) ≥ ∥q− repw∥ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i ≥ (ε/4)r

only levels with i ≤ −⌈log((ε/4)r)/
√
d⌉ considered

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

Let u be node of depth i containing nn(q)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

Let u be node of depth i containing nn(q)
ℓi := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

Let u be node of depth i containing nn(q)
ℓi := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

iteration i + 1: only cells at distance rcurr ≤ ℓi to q considered.

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

Let u be node of depth i containing nn(q)
ℓi := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

iteration i + 1: only cells at distance rcurr ≤ ℓi to q considered.

How many? (upper bound)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

Let u be node of depth i containing nn(q)
ℓi := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

iteration i + 1: only cells at distance rcurr ≤ ℓi to q considered.

How many? (upper bound)

at most ni =
(
2⌈ ℓi

2−i−1 ⌉
)d

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

Let u be node of depth i containing nn(q)
ℓi := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

iteration i + 1: only cells at distance rcurr ≤ ℓi to q considered.

How many? (upper bound)

at most ni =
(
2⌈ ℓi

2−i−1 ⌉
)d
= O

((
1 + r+

√
d2−i

2−i−1

)d
)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

Let u be node of depth i containing nn(q)
ℓi := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

iteration i + 1: only cells at distance rcurr ≤ ℓi to q considered.

How many? (upper bound)

at most ni =
(
2⌈ ℓi

2−i−1 ⌉
)d
= O

((
1 + r+

√
d2−i

2−i−1

)d
)

= O
(
1 +

(
2ir

)d)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

• cells further considered at depth i: ni = O
(
1 +

(
2ir

)d)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

• cells further considered at depth i: ni = O
(
1 +

(
2ir

)d)
h∑
i=0

ni = O(h + 2hr) = O(− log(εr) + 1/εd)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

• cells further considered at depth i: ni = O
(
1 +

(
2ir

)d)
h∑
i=0

ni = O(h + 2hr) = O(− log(εr) + 1/εd)

= O(log(1/r) + 1/εd)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

• cells further considered at depth i: ni = O
(
1 +

(
2ir

)d)
h∑
i=0

ni = O(h + 2hr) = O(− log(εr) + 1/εd)

= O(log(1/r) + 1/εd)

Alternative bound on i: i ≤ logΦ(P)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

• cells further considered at depth i: ni = O
(
1 +

(
2ir

)d)
h∑
i=0

ni = O(h + 2hr) = O(− log(εr) + 1/εd)

= O(log(1/r) + 1/εd)

Alternative bound on i: i ≤ logΦ(P)
Summary:
A (1 + ε)-ANN query on a quadtree takes O(1/εd + logΦ(P)) time.

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ ⌈− log((ε/4)r)/

√
d⌉ ≤ −⌈log((ε/4)r)⌉ =: h considered

• cells further considered at depth i: ni = O
(
1 +

(
2ir

)d)
h∑
i=0

ni = O(h + 2hr) = O(− log(εr) + 1/εd)

= O(log(1/r) + 1/εd)

Alternative bound on i: i ≤ logΦ(P)
Summary:
A (1 + ε)-ANN query on a quadtree takes O(1/εd + logΦ(P)) time.

How about unbounded spread?

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation

low-quality approximation → unbounded spread

Assume we can compute p that is 4n-ANN of q.

low-quality approximation → unbounded spread

Assume we can compute p that is 4n-ANN of q.

R := ∥p− q∥, L := ⌊log R⌋

Algorithm

1. Compute 4n-approximation

2. Find cells of grid G2L at distance ≤ R from q

3. Use algorithm for bounded spread (extended to compressed
quadtrees) on these cells

low-quality approximation → unbounded spread

Assume we can compute p that is 4n-ANN of q.

R := ∥p− q∥, L := ⌊log R⌋

Algorithm

1. Compute 4n-approximation

2. Find cells of grid G2L at distance ≤ R from q

3. Use algorithm for bounded spread (extended to compressed
quadtrees) on these cells

in short:
running time (without step 1) = O(1/ε2 + log(R/r)) = O(1/ε2 + log n)

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation:

ring separator tree
shifting

